vit-msn-small-corect_dataset_lateral_flow_ivalidation

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2930
  • Accuracy: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.6350 0.6337
No log 1.8462 6 0.5047 0.8022
No log 2.7692 9 0.3701 0.8791
0.5485 4.0 13 0.5379 0.7436
0.5485 4.9231 16 0.2748 0.8938
0.5485 5.8462 19 0.3004 0.8974
0.3335 6.7692 22 0.3492 0.8681
0.3335 8.0 26 0.2497 0.8974
0.3335 8.9231 29 0.4304 0.8315
0.3087 9.8462 32 0.3479 0.8791
0.3087 10.7692 35 0.3796 0.8645
0.3087 12.0 39 0.4152 0.8352
0.2614 12.9231 42 0.3199 0.9011
0.2614 13.8462 45 0.3434 0.8718
0.2614 14.7692 48 0.4001 0.8462
0.2471 16.0 52 0.3220 0.8901
0.2471 16.9231 55 0.3540 0.8718
0.2471 17.8462 58 0.4019 0.8535
0.2817 18.7692 61 0.3152 0.8974
0.2817 20.0 65 0.3978 0.8571
0.2817 20.9231 68 0.4289 0.8388
0.2353 21.8462 71 0.3146 0.8974
0.2353 22.7692 74 0.3206 0.8864
0.2353 24.0 78 0.3715 0.8828
0.2339 24.9231 81 0.3446 0.8938
0.2339 25.8462 84 0.2930 0.9048
0.2339 26.7692 87 0.4349 0.8205
0.2301 28.0 91 0.3630 0.8681
0.2301 28.9231 94 0.3669 0.8645
0.2301 29.8462 97 0.5037 0.7912
0.2115 30.7692 100 0.3449 0.8828
0.2115 32.0 104 0.3280 0.9011
0.2115 32.9231 107 0.4031 0.8425
0.2033 33.8462 110 0.3612 0.8535
0.2033 34.7692 113 0.3163 0.8901
0.2033 36.0 117 0.3234 0.8864
0.1807 36.9231 120 0.3307 0.8791

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Melo1512/vit-msn-small-corect_dataset_lateral_flow_ivalidation

Finetuned
(26)
this model

Evaluation results