Melo1512's picture
End of training
e6f0d36 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-wbc-classifier-0316-cropped-cleaned-dataset-10
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8854679802955665

vit-msn-small-wbc-classifier-0316-cropped-cleaned-dataset-10

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3986
  • Accuracy: 0.8855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3709 1.0 17 0.6977 0.8050
0.5673 2.0 34 0.5949 0.8099
0.5227 3.0 51 0.6152 0.7931
0.4958 4.0 68 0.4351 0.8436
0.4402 5.0 85 0.3777 0.8580
0.3878 6.0 102 0.3970 0.8699
0.3646 7.0 119 0.3793 0.8641
0.3452 8.0 136 0.3550 0.8805
0.344 9.0 153 0.4003 0.8736
0.3365 10.0 170 0.3654 0.8830
0.3223 11.0 187 0.3571 0.8764
0.2819 12.0 204 0.3665 0.8789
0.2998 13.0 221 0.3609 0.8838
0.2959 14.0 238 0.4335 0.8719
0.2662 15.0 255 0.4245 0.8785
0.2668 16.0 272 0.3760 0.8846
0.2576 17.0 289 0.3728 0.8830
0.2398 18.0 306 0.4192 0.8814
0.2278 19.0 323 0.4156 0.8805
0.2033 20.0 340 0.4159 0.8851
0.2037 21.0 357 0.3986 0.8855
0.1934 22.0 374 0.4220 0.8822
0.1983 23.0 391 0.4159 0.8855
0.1746 24.0 408 0.4179 0.8855
0.1776 25.0 425 0.4247 0.8834

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1