Abdalla312's picture
End of training
8fa1269 verified
metadata
license: apache-2.0
base_model: motheecreator/Deepfake-audio-detection
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Deepfake-audio-detection
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9963791074499864
          - name: Precision
            type: precision
            value: 0.9943959123125103
          - name: Recall
            type: recall
            value: 0.9990064580228515
          - name: F1
            type: f1
            value: 0.9966958532958864

Deepfake-audio-detection

This model is a fine-tuned version of motheecreator/Deepfake-audio-detection on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0192
  • Accuracy: 0.9964
  • Precision: 0.9944
  • Recall: 0.9990
  • F1: 0.9967
  • Auc Roc: 1.0000
  • Confusion Matrix: [[4974, 34], [6, 6033]]
  • Classification Report: {'0': {'precision': 0.9987951807228915, 'recall': 0.9932108626198083, 'f1-score': 0.9959951942330797, 'support': 5008}, '1': {'precision': 0.9943959123125103, 'recall': 0.9990064580228515, 'f1-score': 0.9966958532958864, 'support': 6039}, 'accuracy': 0.9963791074499864, 'macro avg': {'precision': 0.996595546517701, 'recall': 0.9961086603213298, 'f1-score': 0.996345523764483, 'support': 11047}, 'weighted avg': {'precision': 0.9963902579447351, 'recall': 0.9963791074499864, 'f1-score': 0.9963782194960733, 'support': 11047}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc Roc Confusion Matrix Classification Report
0.1006 0.3621 1000 0.1897 0.9651 0.9424 0.9972 0.9690 0.9989 [[4640, 368], [17, 6022]] {'0': {'precision': 0.9963495812754992, 'recall': 0.9265175718849841, 'f1-score': 0.9601655457837558, 'support': 5008}, '1': {'precision': 0.9424100156494523, 'recall': 0.9971849643980791, 'f1-score': 0.969024056641725, 'support': 6039}, 'accuracy': 0.9651489092061193, 'macro avg': {'precision': 0.9693797984624757, 'recall': 0.9618512681415317, 'f1-score': 0.9645948012127403, 'support': 11047}, 'weighted avg': {'precision': 0.9668627489395077, 'recall': 0.9651489092061193, 'f1-score': 0.9650081770023017, 'support': 11047}}
0.07 0.7241 2000 0.0333 0.9916 0.9914 0.9932 0.9923 0.9997 [[4956, 52], [41, 5998]] {'0': {'precision': 0.9917950770462277, 'recall': 0.9896166134185304, 'f1-score': 0.9907046476761618, 'support': 5008}, '1': {'precision': 0.991404958677686, 'recall': 0.993210796489485, 'f1-score': 0.9923070560013236, 'support': 6039}, 'accuracy': 0.9915814248212185, 'macro avg': {'precision': 0.9916000178619568, 'recall': 0.9914137049540077, 'f1-score': 0.9915058518387427, 'support': 11047}, 'weighted avg': {'precision': 0.9915818132798093, 'recall': 0.9915814248212185, 'f1-score': 0.9915806270258181, 'support': 11047}}
0.016 1.0862 3000 0.1018 0.9841 0.9727 0.9988 0.9856 0.9998 [[4839, 169], [7, 6032]] {'0': {'precision': 0.9985555096987206, 'recall': 0.9662539936102237, 'f1-score': 0.9821392327988635, 'support': 5008}, '1': {'precision': 0.9727463312368972, 'recall': 0.9988408676933267, 'f1-score': 0.9856209150326798, 'support': 6039}, 'accuracy': 0.9840680727799402, 'macro avg': {'precision': 0.985650920467809, 'recall': 0.9825474306517752, 'f1-score': 0.9838800739157716, 'support': 11047}, 'weighted avg': {'precision': 0.9844465544410985, 'recall': 0.9840680727799402, 'f1-score': 0.9840425440154849, 'support': 11047}}
0.0209 1.4482 4000 0.0212 0.9957 0.9950 0.9972 0.9961 0.9999 [[4978, 30], [17, 6022]] {'0': {'precision': 0.9965965965965966, 'recall': 0.9940095846645367, 'f1-score': 0.9953014095771269, 'support': 5008}, '1': {'precision': 0.9950429610046265, 'recall': 0.9971849643980791, 'f1-score': 0.9961128111818707, 'support': 6039}, 'accuracy': 0.995745451253734, 'macro avg': {'precision': 0.9958197788006116, 'recall': 0.995597274531308, 'f1-score': 0.9957071103794988, 'support': 11047}, 'weighted avg': {'precision': 0.9957472795566846, 'recall': 0.995745451253734, 'f1-score': 0.9957449738290548, 'support': 11047}}
0.0233 1.8103 5000 0.0192 0.9964 0.9944 0.9990 0.9967 1.0000 [[4974, 34], [6, 6033]] {'0': {'precision': 0.9987951807228915, 'recall': 0.9932108626198083, 'f1-score': 0.9959951942330797, 'support': 5008}, '1': {'precision': 0.9943959123125103, 'recall': 0.9990064580228515, 'f1-score': 0.9966958532958864, 'support': 6039}, 'accuracy': 0.9963791074499864, 'macro avg': {'precision': 0.996595546517701, 'recall': 0.9961086603213298, 'f1-score': 0.996345523764483, 'support': 11047}, 'weighted avg': {'precision': 0.9963902579447351, 'recall': 0.9963791074499864, 'f1-score': 0.9963782194960733, 'support': 11047}}

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1