AstroM3-CLIP-12

AstroM³ is a self-supervised multimodal model for astronomy that integrates time-series photometry, spectra, and metadata into a unified embedding space for classification and other downstream tasks. AstroM³ is trained on AstroM3Processed. For more details on the AstroM³ architecture, training, and results, please refer to the paper.


Figure 1: Overview of the multimodal CLIP framework adapted for astronomy, incorporating three data modalities: photometric time-series, spectra, and metadata. Each modality is processed by a dedicated encoder to create embeddings, which are then mapped into a shared embedding space through projection heads. Pairwise similarity matrices align the embeddings across modalities, and a symmetric cross-entropy loss, computed over these matrices, optimizes the model. The total loss, derived from all pairwise losses, guides the model’s trimodal learning.

To perform inference with AstroM³, install the AstroM3 library from our GitHub repo.

git clone https://github.com/MeriDK/AstroM3.git
cd AstroM3

Create a virtual environment (tested with Python 3.10.14), then install the required dependencies:

uv venv venv --python 3.10.14
source venv/bin/activate
uv pip install -r requirements.txt

A simple example to get started:

  1. Data Loading & Preprocessing
from datasets import load_dataset
from src.data import process_photometry

# Load the test dataset
test_dataset = load_dataset('MeriDK/AstroM3Processed', name='full_42', split='test')

# Process photometry to have a fixed sequence length of 200 (center-cropped)
test_dataset = test_dataset.map(process_photometry, batched=True, fn_kwargs={'seq_len': 200, 'how': 'center'})
test_dataset = test_dataset.with_format('torch')
  1. Model Loading & Embedding Extraction
import torch
from src.model import AstroM3

# Load the base AstroM3-CLIP model
model = AstroM3.from_pretrained('MeriDK/AstroM3-CLIP')

# Retrieve the first sample (batch size = 1)
sample = test_dataset[0:1]
photometry = sample['photometry']
photometry_mask = sample['photometry_mask']
spectra = sample['spectra']
metadata = sample['metadata']

# Example 1: Generate embeddings when all modalities are present
p_emb, s_emb, m_emb = model.get_embeddings(photometry, photometry_mask, spectra, metadata)
multimodal_emb = (p_emb + s_emb + m_emb) / 3
print('Multimodal Embedding (All Modalities):', multimodal_emb)

# Example 2: Generate embeddings when the spectra modality is missing
dummy_spectra = torch.zeros_like(spectra)  # Dummy tensor for missing spectra
p_emb, s_emb, m_emb = model.get_embeddings(photometry, photometry_mask, dummy_spectra, metadata)
multimodal_emb_missing = (p_emb + m_emb) / 2
print('Multimodal Embedding (Spectra Missing):', multimodal_emb_missing)
  1. Classification Examples
from src.model import AstroM3, Informer, GalSpecNet, MetaModel

# Photometry classification
photo_model = Informer.from_pretrained('MeriDK/AstroM3-CLIP-photo')
prediction = photo_model(photometry, photometry_mask).argmax(dim=1).item()
print('Photometry Classification:', test_dataset.features['label'].int2str(prediction))

# Spectra classification
spectra_model = GalSpecNet.from_pretrained('MeriDK/AstroM3-CLIP-spectra')
prediction = spectra_model(spectra).argmax(dim=1).item()
print('Spectra Classification:', test_dataset.features['label'].int2str(prediction))

# Metadata classification
meta_model = MetaModel.from_pretrained('MeriDK/AstroM3-CLIP-meta')
prediction = meta_model(metadata).argmax(dim=1).item()
print('Metadata Classification:', test_dataset.features['label'].int2str(prediction))

# Multimodal classification
all_model = AstroM3.from_pretrained('MeriDK/AstroM3-CLIP-all')
prediction = all_model(photometry, photometry_mask, spectra, metadata).argmax(dim=1).item()
print('Multimodal Classification:', test_dataset.features['label'].int2str(prediction))

The AstroM³ Family

# Model # Description
AstroM3-CLIP The base model pre-trained using the trimodal CLIP approach.
AstroM3-CLIP-meta Fine-tuned for metadata-only classification.
AstroM3-CLIP-spectra Fine-tuned for spectra-only classification.
AstroM3-CLIP-photo Fine-tuned for photometry-only classification.
AstroM3-CLIP-all Fine-tuned for multimodal classification.

AstroM3-CLIP Variants

These variants of the base AstroM3-CLIP model are trained using different random seeds (42, 0, 66, 12, 123); ensure that the dataset is loaded with the corresponding seed for consistency.

# Model # Description
AstroM3-CLIP-42 The base model pre-trained with random seed 42 (identical to AstroM3-CLIP).
AstroM3-CLIP-0 AstroM3-CLIP pre-trained with random seed 0 (use dataset with seed 0).
AstroM3-CLIP-66 AstroM3-CLIP pre-trained with random seed 66 (use dataset with seed 66).
AstroM3-CLIP-12 AstroM3-CLIP pre-trained with random seed 12 (use dataset with seed 12).
AstroM3-CLIP-123 AstroM3-CLIP pre-trained with random seed 123 (use dataset with seed 123).
Downloads last month
16
Safetensors
Model size
16.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train MeriDK/AstroM3-CLIP-12