Edit model card

MeMo_BERT-SA

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-03 on an https://huggingface.co/MiMe-MeMo/MeMo-Dataset-SA dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3157
  • F1-score: 0.7821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 297 0.7332 0.7373
0.5945 2.0 594 0.9941 0.7644
0.5945 3.0 891 1.1745 0.7714
0.2243 4.0 1188 1.6828 0.7210
0.2243 5.0 1485 1.6114 0.7308
0.0807 6.0 1782 1.9495 0.7515
0.0133 7.0 2079 2.0289 0.7536
0.0133 8.0 2376 2.1528 0.7566
0.0002 9.0 2673 2.2011 0.7560
0.0002 10.0 2970 2.2830 0.7351
0.0199 11.0 3267 2.3461 0.7456
0.0103 12.0 3564 2.2212 0.7533
0.0103 13.0 3861 2.2322 0.7622
0.0063 14.0 4158 2.3226 0.7599
0.0063 15.0 4455 2.3019 0.7561
0.0026 16.0 4752 2.2407 0.7675
0.0 17.0 5049 2.2745 0.7715
0.0 18.0 5346 2.3114 0.7716
0.0002 19.0 5643 2.3157 0.7821
0.0002 20.0 5940 2.3187 0.7749

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
33
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MiMe-MeMo/MeMo-BERT-SA

Finetuned
(16)
this model