File size: 2,696 Bytes
a750ef4
 
 
 
 
c824a0e
a750ef4
17e110a
 
 
 
a750ef4
 
17e110a
a750ef4
 
 
f33ecf5
a750ef4
ff9bf69
a750ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model: MiMe-MeMo/MeMo-BERT-03
tags:
- generated_from_trainer
model-index:
- name: MeMo_BERT-SA
  results: []
  language: da
widget:
  - text: >-
      Men endnu sad hun , bleg og skælvende , ved vinduet og lyttede med rædsel i sit blikat en den urolige i de !
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MeMo_BERT-SA

This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on an https://huggingface.co/MiMe-MeMo/MeMo-Dataset-SA  dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3157
- F1-score: 0.7821

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 297  | 0.7332          | 0.7373   |
| 0.5945        | 2.0   | 594  | 0.9941          | 0.7644   |
| 0.5945        | 3.0   | 891  | 1.1745          | 0.7714   |
| 0.2243        | 4.0   | 1188 | 1.6828          | 0.7210   |
| 0.2243        | 5.0   | 1485 | 1.6114          | 0.7308   |
| 0.0807        | 6.0   | 1782 | 1.9495          | 0.7515   |
| 0.0133        | 7.0   | 2079 | 2.0289          | 0.7536   |
| 0.0133        | 8.0   | 2376 | 2.1528          | 0.7566   |
| 0.0002        | 9.0   | 2673 | 2.2011          | 0.7560   |
| 0.0002        | 10.0  | 2970 | 2.2830          | 0.7351   |
| 0.0199        | 11.0  | 3267 | 2.3461          | 0.7456   |
| 0.0103        | 12.0  | 3564 | 2.2212          | 0.7533   |
| 0.0103        | 13.0  | 3861 | 2.2322          | 0.7622   |
| 0.0063        | 14.0  | 4158 | 2.3226          | 0.7599   |
| 0.0063        | 15.0  | 4455 | 2.3019          | 0.7561   |
| 0.0026        | 16.0  | 4752 | 2.2407          | 0.7675   |
| 0.0           | 17.0  | 5049 | 2.2745          | 0.7715   |
| 0.0           | 18.0  | 5346 | 2.3114          | 0.7716   |
| 0.0002        | 19.0  | 5643 | 2.3157          | 0.7821   |
| 0.0002        | 20.0  | 5940 | 2.3187          | 0.7749   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2