Model Illustration
“何が綴られていたのか、私たちの文明では到底理解できない”
(所阐述的内容超出了我们文明的理解范围)
— sasakure.UK

How to use

微调基于Qwen2.5-7B-Instruct


# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Minami-su/Amara-o1-7B-Qwen")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Minami-su/Amara-o1-7B-Qwen")
model = AutoModelForCausalLM.from_pretrained("Minami-su/Amara-o1-7B-Qwen")

Open Ended Generation Evaluation

Model Arena-Hard AlpacaEval 2.0
DeepSeek-V2.5-0905 76.2 50.5
Qwen2.5-72B-Instruct 81.2 49.1
LLaMA-3.1 405B 69.3 40.5
Amara-o1-7B-Qwen ? 42.12
GPT-4o-0513 80.4 51.1
Claude-Sonnet-3.5-1022 85.2 52.0
DeepSeek-V3 85.5 70.0

Note: English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric.

Downloads last month
19
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train Minami-su/Amara-o1-7B-Qwen