from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer


quant_path = "Moses25/Mistral-7B-Instruct-32K-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

chat = [
    {"role": "system", "content": "You are a concise assistant that helps answer questions."},
    {"role": "user", "content": prompt},
]

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("</s>")
]

tokens = tokenizer.apply_chat_template(
    chat,
    return_tensors="pt"
).cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=2048,
    eos_token_id=terminators
)
Downloads last month
79
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Space using Moses25/Mistral-7B-Instruct-32K-AWQ 1

Collection including Moses25/Mistral-7B-Instruct-32K-AWQ