from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer


quant_path = "Moses25/Mistral-7B-Instruct-32K-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

chat = [
    {"role": "system", "content": "You are a concise assistant that helps answer questions."},
    {"role": "user", "content": prompt},
]

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("</s>")
]

tokens = tokenizer.apply_chat_template(
    chat,
    return_tensors="pt"
).cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=2048,
    eos_token_id=terminators
)
Downloads last month
16
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Space using Moses25/Mistral-7B-Instruct-32K-AWQ 1

Collection including Moses25/Mistral-7B-Instruct-32K-AWQ