Inference
import random
import json
def generate_random_data():
return {
"Users": random.randint(5, 20),
"Groups": random.randint(10, 30),
"Projects/Repositories": random.randint(4000, 5000),
"Scans": random.randint(40, 100),
"Lines_of_Code": random.randint(25000000, 35000000),
"Vulnerabilities": random.randint(7000, 8000),
"False_Positives": random.randint(10, 30),
"True_Positives": random.randint(150, 200),
"Confirmed_Vulnerabilities": {
"Secret": random.randint(0, 200),
"PII": random.randint(0, 200),
"SAST": random.randint(0, 200),
"SCA": random.randint(0, 200),
"IaC": random.randint(0, 200),
"Container": random.randint(0, 200),
"API": random.randint(0, 200),
"Compliance": random.randint(0, 200),
"Malware": random.randint(0, 225)
},
" Trend_percentages_compare_with_last_week": {
"Scans": round(random.uniform(-100, +100), 2),
"Lines_of_Code": round(random.uniform(-100, -100), 2),
"Vulnerabilities": round(random.uniform(-100, -100), 2),
"False_Positives": round(random.uniform(-100, 1000), 2),
"True_Positives": round(random.uniform(-100, 100), 2),
"Secret": round(random.uniform(-100, 1500), 2),
"PII": round(random.uniform(-100, 1500), 2),
"SAST": round(random.uniform(-100, 1500), 2),
"SCA": round(random.uniform(-100, 1500), 2),
"IaC": round(random.uniform(-100, 1500), 2),
"Compliance": round(random.uniform(-100, 1500), 2),
"Malware": round(random.uniform(-100, 1500), 2),
}
}
def json_to_semi_structured_text(data):
try:
data = json.loads(data.replace("'",'"'))
except:
pass
"""
Convert JSON data into a semi-structured text format for training T5-Flan.
Args:
data (dict): The JSON object to convert.
Returns:
str: Semi-structured text representation of the JSON.
"""
text_output = []
for key, value in data.items():
if isinstance(value, dict):
# Handle nested dictionaries
text_output.append(f"{key.capitalize()}:")
for sub_key, sub_value in value.items():
text_output.append(f"- {sub_key}: {sub_value}")
else:
# Direct key-value pairs
text_output.append(f"{key.replace('_', ' ').capitalize()}: {value}")
return "\n".join(text_output)
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/T5-data-reasoning")
model = AutoModelForSeq2SeqLM.from_pretrained("Mr-Vicky-01/T5-data-reasoning")
data_inp = json_to_semi_structured_text(generate_random_data())
inp = "Summarize and reason: " + data_inp
import time
start = time.time()
inputs = tokenizer(inp, return_tensors="pt",truncation=True)
model.to(device)
inputs = inputs.to(device)
outputs = model.generate(**inputs,max_length=256,do_sample=False)
answer = tokenizer.decode(outputs[0])
print(answer)
end = time.time()
print(f"Time taken: {end - start}")
print('\n\n')
print("input: "+inp)
- Downloads last month
- 117
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.