Inference
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import time
import torch
import re
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = AutoModelForSequenceClassification.from_pretrained("Mr-Vicky-01/finetuned_classification_model").to(device)
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/finetuned_classification_model")
start = time.time()
question = "give me a scan result"
question = re.sub(r'[,?.]', '', question)
inputs = tokenizer(question, return_tensors="pt").to(device)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
predicted_class = model.config.id2label[predicted_class_id]
print(predicted_class)
print(time.time() - start)
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.