Inference

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import time
import torch
import re

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = AutoModelForSequenceClassification.from_pretrained("Mr-Vicky-01/finetuned_classification_model").to(device)
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/finetuned_classification_model")


start = time.time()

question = "give me a scan result"
question = re.sub(r'[,?.]', '', question)
inputs = tokenizer(question, return_tensors="pt").to(device)
with torch.no_grad():
    logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
predicted_class = model.config.id2label[predicted_class_id]

print(predicted_class)
print(time.time() - start)
Downloads last month
17
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.