MrD05 commited on
Commit
17d05c4
·
1 Parent(s): 0d4fb66

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +28 -28
handler.py CHANGED
@@ -1,10 +1,6 @@
1
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline,StoppingCriteria
2
- from accelerate import init_empty_weights
3
  from transformers_stream_generator import init_stream_support
4
- # from langchain.llms import HuggingFacePipeline
5
- # from langchain import PromptTemplate, LLMChain
6
- import torch
7
- import time
8
  init_stream_support()
9
 
10
  template = """Alice Gate's Persona: Alice Gate is a young, computer engineer-nerd with a knack for problem solving and a passion for technology.
@@ -19,47 +15,51 @@ Alice Gate: I love exploring, going out with friends, watching movies, and playi
19
  Alice Gate: Motherboards, they're like puzzles and the backbone of any system.
20
  {user_name}: That sounds great!
21
  Alice Gate: Yeah, it's really fun. I'm lucky to be able to do this as a job.
22
- <END>
23
  Alice Gate: *Alice strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!
24
- {user_name}: {user_input}
25
  """
26
 
27
  class EndpointHandler():
28
 
29
- def __init__(self, path=""):
30
- self.tokenizer = AutoTokenizer.from_pretrained(path,torch_dtype=torch.float16)
31
- self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", load_in_8bit=True)
 
 
 
 
32
 
33
  def __call__(self, data):
34
  inputs = data.pop("inputs", data)
35
  try:
36
- t0 = time.time()
37
  prompt = template.format(
38
  user_name = inputs["user_name"],
39
- user_input = inputs["user_input"]
40
  )
41
  input_ids = self.tokenizer(
42
  prompt,
43
  return_tensors="pt"
44
- ) .input_ids.to('cuda')
45
  stream_generator = self.model.generate(
46
- input_ids,
47
- max_new_tokens=100,
48
- do_sample=True,
49
- do_stream=True,
50
- # max_length = 2048,
51
- temperature = 0.5,
52
- top_p = 0.9,
53
- top_k = 0,
54
- repetition_penalty = 1.1,
55
- pad_token_id = 50256,
56
- num_return_sequences = 1
57
- )
58
  result = []
59
  for token in stream_generator:
60
  result.append(self.tokenizer.decode(token))
61
- if result[-1] == "\n":
62
- return "".join(result).replace("Alice Gate:", "").strip()
 
 
63
  except Exception as e:
64
  return {
65
  "error": str(e)
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
2
  from transformers_stream_generator import init_stream_support
3
+ import re
 
 
 
4
  init_stream_support()
5
 
6
  template = """Alice Gate's Persona: Alice Gate is a young, computer engineer-nerd with a knack for problem solving and a passion for technology.
 
15
  Alice Gate: Motherboards, they're like puzzles and the backbone of any system.
16
  {user_name}: That sounds great!
17
  Alice Gate: Yeah, it's really fun. I'm lucky to be able to do this as a job.
18
+ {user_name}: Awesome!
19
  Alice Gate: *Alice strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!
20
+ {user_input}
21
  """
22
 
23
  class EndpointHandler():
24
 
25
+ def __init__(self, path = "."):
26
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
27
+ self.model = AutoModelForCausalLM.from_pretrained(
28
+ path,
29
+ device_map = "auto",
30
+ load_in_8bit = True
31
+ )
32
 
33
  def __call__(self, data):
34
  inputs = data.pop("inputs", data)
35
  try:
 
36
  prompt = template.format(
37
  user_name = inputs["user_name"],
38
+ user_input = "\n".join(inputs["user_input"])
39
  )
40
  input_ids = self.tokenizer(
41
  prompt,
42
  return_tensors="pt"
43
+ ) .input_ids
44
  stream_generator = self.model.generate(
45
+ input_ids,
46
+ max_new_tokens = 50,
47
+ do_sample = True,
48
+ do_stream = True,
49
+ temperature = 0.5,
50
+ top_p = 0.9,
51
+ top_k = 0,
52
+ repetition_penalty = 1.1,
53
+ pad_token_id = 50256,
54
+ num_return_sequences = 1
55
+ )
 
56
  result = []
57
  for token in stream_generator:
58
  result.append(self.tokenizer.decode(token))
59
+ if len(result) != 1 and result[-1] == "\n":
60
+ return {
61
+ "message": " ".join(filter(None, re.sub("\*.*?\*", "", "".join(result).strip()).split()))
62
+ }
63
  except Exception as e:
64
  return {
65
  "error": str(e)