MubarakB's picture
Model save
4acfcac verified
|
raw
history blame
4.19 kB
metadata
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-lg-en
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: opus-mt-lg-en-informal
    results: []

opus-mt-lg-en-informal

This model is a fine-tuned version of Helsinki-NLP/opus-mt-lg-en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1343
  • Bleu: 0.0
  • Bleu Precision: [0.019908987485779295, 0.0006461339651087659, 0.0, 0.0]
  • Bleu Brevity Penalty: 1.0
  • Bleu Length Ratio: 1.2563
  • Bleu Translation Length: 5274
  • Bleu Reference Length: 4198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Bleu Precision Bleu Brevity Penalty Bleu Length Ratio Bleu Translation Length Bleu Reference Length
4.568 1.0 119 0.8525 0.0 [0.011322534989778267, 0.00017458100558659218, 0.0, 0.0] 1.0 1.5148 6359 4198
0.6495 2.0 238 0.1701 0.0 [0.012054948135688253, 0.0003405994550408719, 0.0, 0.0] 0.8379 0.8497 3567 4198
0.1889 3.0 357 0.1443 0.0 [0.0408483896307934, 0.0010443864229765013, 0.0, 0.0] 0.5226 0.6065 2546 4198
0.1513 4.0 476 0.1384 0.0 [0.03887070376432079, 0.0005515719801434088, 0.0, 0.0] 0.4879 0.5822 2444 4198
0.1424 5.0 595 0.1357 0.0 [0.027095148078134845, 0.0012106537530266344, 0.0, 0.0] 1.0 1.1341 4761 4198
0.1331 6.0 714 0.1346 0.0 [0.016541609822646658, 0.0005732849226065354, 0.0, 0.0] 1.0 1.3969 5864 4198
0.1265 7.0 833 0.1340 0.0 [0.03237891356703238, 0.0016097875080489374, 0.0, 0.0] 0.8839 0.8902 3737 4198
0.1296 8.0 952 0.1339 0.0 [0.026692456479690523, 0.0013218770654329147, 0.0, 0.0] 1.0 1.2315 5170 4198
0.123 9.0 1071 0.1340 0.0 [0.025897226753670472, 0.001404165691551603, 0.0, 0.0] 1.0 1.1682 4904 4198
0.1227 10.0 1190 0.1339 0.0 [0.014839915868193504, 0.0008830579033682352, 0.0, 0.0] 1.0 2.0386 8558 4198
0.117 11.0 1309 0.1343 0.0 [0.019908987485779295, 0.0006461339651087659, 0.0, 0.0] 1.0 1.2563 5274 4198

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1