SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-citi-dataset-9k-1k-e1")
# Run inference
sentences = [
    ' be sure you had enough cash on hand to pay the fare. Channels, TTS Of course, all of that changed in the blink of an eye with the advent of ride sharing. Now getting from point A to point B is as easy as opening an app on your smart phone. Not only is it simple to book the ride, but once your account is set up, payment is absolutely seamless. No longer do you have to search your wallet for cash. The app knows who you are and the entire transaction happens in the background, without further input on the part of the rider or the driver. Payment is embedded in the experience as part of the natural flow, so you don’t have to think about it. \n 2 Treasury and Trade Solutions The invisible bank 3 This is just one example of the changes happening in today’s hyper-connected world. Artificial intelligence (AI), cloud is poised to deliver the “invisible bank,” where treasury and banking functions meld together. The continuous evolution of banking computing',
    'What is the advent of ride sharing?',
    'How is a credit card introductory APR beneficial?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.049
cosine_accuracy@3 0.115
cosine_accuracy@5 0.15
cosine_accuracy@10 0.205
cosine_precision@1 0.049
cosine_precision@3 0.0383
cosine_precision@5 0.03
cosine_precision@10 0.0205
cosine_recall@1 0.049
cosine_recall@3 0.115
cosine_recall@5 0.15
cosine_recall@10 0.205
cosine_ndcg@10 0.118
cosine_ndcg@100 0.1733
cosine_mrr@10 0.0913
cosine_map@100 0.1008

Training Details

Training Dataset

Unnamed Dataset

  • Size: 9,000 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 116 tokens
    • mean: 207.16 tokens
    • max: 288 tokens
    • min: 4 tokens
    • mean: 15.73 tokens
    • max: 37 tokens
  • Samples:
    positive anchor
    ation. US 10-year Treasury yields have risen more than 30 basis points since the Sep 20 FOMC meeting, but just 5 basis points for 2-year notes, steepening the yield curve. Most importantly, the recent rise in rates was a “break out” for yields above post-COVID expansion highs (Figure 4). Figure 4: 10-year US Nominal Treasury yield and 10-year Inflation Indexed US Treasury Source: Haver Analytics as of September 28, 2023. Gray areas are recessions. Past performance is no guarantee of future results. Real results may vary. Citi Global Wealth Investments CIO Strategy Bulletin
    extension How to Save Money Using the Citi Shop Extension Citi.com Save money online shopping Save shopping online How to save money shopping online How to Save Money Shopping Online
    common control of Citigroup. Outside the U.S., investment products and services are provided by other Citigroup affiliates. Investment Management services (including portfolio management) are available through CGMI, CGA, Citibank, N.A. and other affiliated advisory businesses. These Citigroup affiliates, including CGA, will be compensated for the respective investment management, advisory, administrative, distribution and placement services they may provide. International Personal Bank U.S. (“IPB U.S.”) is a business of Citigroup which provides its clients access to a broad array of products and services available through Citigroup, its bank and non-bank affiliates worldwide (collectively, “Citi”). Through IPB U.S. prospects and clients have access to the Citigold® Private Client International, Citigold® International, International Personal, Citi Global Executive Preferred, and Citi Global Executive Account Packages. Investment products and services are made available through Citi Personal Investments International (“CPII”), a business What are the typical assumpitons given in the report?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768
        ],
        "matryoshka_weights": [
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100
0.0355 10 2.0527 -
0.0709 20 2.3092 -
0.1064 30 1.8688 -
0.1418 40 1.8818 -
0.1773 50 1.75 -
0.2128 60 1.8462 -
0.2482 70 1.7534 -
0.2837 80 1.7534 -
0.3191 90 1.7454 -
0.3546 100 1.7037 -
0.3901 110 1.6765 -
0.4255 120 1.5392 -
0.4610 130 1.722 -
0.4965 140 1.5609 -
0.5319 150 1.6001 -
0.5674 160 1.5694 -
0.6028 170 1.7528 -
0.6383 180 1.5393 -
0.6738 190 1.6765 -
0.7092 200 1.4197 -
0.7447 210 1.5231 -
0.7801 220 1.7733 -
0.8156 230 1.5464 -
0.8511 240 1.5321 -
0.8865 250 1.5727 -
0.9220 260 1.5909 -
0.9574 270 1.6485 -
0.9929 280 1.6605 -
1.0 282 - 0.1008
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MugheesAwan11/bge-base-citi-dataset-9k-1k-e1

Finetuned
(331)
this model

Evaluation results