language:
- en
license: cc-by-nc-4.0
tags:
- mental
- mental health
- large language model
- alpaca
model-index:
- name: mental-alpaca
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 28.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 26.02
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.04
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.61
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.38
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
Model Card for mental-alpaca
This is a fine-tuned large language model for mental health prediction via online text data.
Model Details
Model Description
We fine-tune an Alpaca model with 4 high-quality text (6 tasks in total) datasets for the mental health prediction scenario: Dreaddit, DepSeverity, SDCNL, and CCRS-Suicide. We have a separate model, fine-tuned on FLAN-T5-XXL, namely Mental-FLAN-T5, shared here
- Developed by: Northeastern University Human-Centered AI Lab
- Model type: Sequence-to-sequence Text-generation
- Language(s) (NLP): English
- License: cc-by-nc-4.0
- Finetuned from model: https://github.com/tatsu-lab/stanford_alpaca
Model Sources [optional]
- Repository: https://github.com/neuhai/Mental-LLM
- Paper: https://arxiv.org/abs/2307.14385
Uses
Direct Use
The model is intended to be used for research purposes only in English. The model has been fine-tuned for mental health prediction via online text data. Detailed information about the fine-tuning process and prompts can be found in our paper. The use of this model should also comply with the restrictions from stanford_alpaca project and Llama-2-7b.
Out-of-Scope Use
The out-of-scope use of this model should comply with stanford_alpaca project and Llama-2-7b.
Bias, Risks, and Limitations
The Bias, Risks, and Limitations of this model should also comply with stanford_alpaca project and Llama-2-7b.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned")
model = AutoModelForCausalLM.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned")
Training Details and Evaluation
Detailed information about our work can be found in our paper.
Citation
@article{xu2023leveraging,
title={Mental-LLM: Leveraging large language models for mental health prediction via online text data},
author={Xu, Xuhai and Yao, Bingshen and Dong, Yuanzhe and Gabriel, Saadia and Yu, Hong and Ghassemi, Marzyeh and Hendler, James and Dey, Anind K and Wang, Dakuo},
journal={arXiv preprint arXiv:2307.14385},
year={2023}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.77 |
AI2 Reasoning Challenge (25-Shot) | 28.58 |
HellaSwag (10-Shot) | 26.02 |
MMLU (5-Shot) | 27.04 |
TruthfulQA (0-shot) | 48.61 |
Winogrande (5-shot) | 48.38 |
GSM8k (5-shot) | 0.00 |