|
--- |
|
license: gemma |
|
base_model: google/paligemma-3b-pt-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- AffectNet |
|
model-index: |
|
- name: paligemma_emotion_ |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FaceScanPaliGemma_Emotion |
|
|
|
|
|
``` python |
|
|
|
from PIL import Image |
|
import torch |
|
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer |
|
|
|
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/FaceScanPaliGemma_Emotion',torch_dtype=torch.bfloat16) |
|
|
|
input_text = "what is the emotion of the person in the image?" |
|
|
|
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model.to(device) |
|
|
|
|
|
input_image = Image.open('image_path') |
|
inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device) |
|
inputs = inputs.to(dtype=model.dtype) |
|
|
|
with torch.no_grad(): |
|
output = model.generate(**inputs, max_length=500) |
|
result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip() |
|
|
|
|
|
``` |
|
|
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the AffectNet dataset. |
|
The model aims to classify the emotion of face image or image with one person into eight categoris such as 'neutral', 'happy', 'sad', 'surprise', 'fear', 'disgust', |
|
'anger', 'contempt' |
|
|
|
|
|
## Model Performance |
|
Accuracy: 59.4 %, F1 score: 59 % |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
This model is used for research purposes |
|
|
|
## Training and evaluation data |
|
|
|
AffectNet dataset was used for training and validating the model |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|
|
|
|
|
|
# BibTeX entry and citation info |
|
|
|
``` |
|
|
|
@article{aldahoul2024exploring, |
|
title={Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age}, |
|
author={AlDahoul, Nouar and Tan, Myles Joshua Toledo and Kasireddy, Harishwar Reddy and Zaki, Yasir}, |
|
journal={arXiv preprint arXiv:2410.24148}, |
|
year={2024} |
|
} |
|
|
|
@misc{ComNets, |
|
url={https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Emotion](https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Emotion)}, |
|
title={FaceScanPaliGemma_Emotion}, |
|
author={Nouar AlDahoul, Yasir Zaki} |
|
} |