> alt="Model-card-peft-lora-1.0" align="center">
Model Card for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-1.0
Model Details
Model Description
- Finetuned from model:[Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT]
Training Details
Parameters used for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-1.0
model = FastLanguageModel.get_peft_model(
model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0.05,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "completion",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 6,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps=5000,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs_2",
push_to_hub=True,
hub_always_push=True,
),
)
Dataset: Berkeley-nest/Nectar
Training Data
[berkeley-nest/Nectar]
Evaluation
MMLU Pro 0-shot: 0.2927
Evaluation Data
[TIGER-AI-Lab/MMLU-Pro]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-1.0
Base model
Na0s/Llama-3.1-8B-Pruned-4-Layers