Neura Speech Nemo

Model Description

  • Developed by: Neura company
  • Funded by: Neura
  • Model type: fa_FastConformers_Transducer
  • Language(s) (NLP): Persian

Model Architecture

This model uses a FastConformer-TDT architecture. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. You may find more information on the details of FastConformer here: Fast-Conformer Model. Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition.

Uses

Check out the Google Colab demo to run NeuraSpeech ASR on a free-tier Google Colab instance: Open In Colab

make sure these packages are installed:

!pip install nemo_toolkit['all']
from IPython.display import Audio, display
display(Audio('persian_audio.mp3', rate = 32_000,autoplay=True))
import nemo
print('nemo', nemo.__version__)
import numpy as np
import nemo.collections.asr as nemo_asr

asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name="Neurai/NeuraSpeech_900h")
asr_model.transcribe(paths2audio_files=['persian_audio.mp3', ], batch_size=1)[0]

trascribed text :

او خواهان آزاد کردن بردگان بود

More Information

https://neura.info

Model Card Authors

Esmaeil Zahedi, Mohsen Yazdinejad

Model Card Contact

[email protected]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support automatic-speech-recognition models for Nvidia Nemo library.