|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: google/gemma-2b |
|
model-index: |
|
- name: Octopus-V2-2B |
|
results: [] |
|
tags: |
|
- function calling |
|
- on-device language model |
|
- android |
|
inference: false |
|
space: false |
|
spaces: false |
|
language: |
|
- en |
|
--- |
|
|
|
# Quantized Octopus V2: On-device language model for super agent |
|
|
|
This repo includes two types of quantized models: **GGUF** and **AWQ**, for ourOctopus V2 model at [NexaAIDev/Octopus-v2](https://huggingface.co/NexaAIDev/Octopus-v2) |
|
|
|
|
|
# GGUF Qauntization |
|
|
|
## Run with [Ollama](https://github.com/ollama/ollama) |
|
|
|
```bash |
|
ollama run NexaAIDev/octopus-v2-Q4_K_M |
|
``` |
|
|
|
Input example: |
|
|
|
```json |
|
def get_trending_news(category=None, region='US', language='en', max_results=5): |
|
""" |
|
Fetches trending news articles based on category, region, and language. |
|
|
|
Parameters: |
|
- category (str, optional): News category to filter by, by default use None for all categories. Optional to provide. |
|
- region (str, optional): ISO 3166-1 alpha-2 country code for region-specific news, by default, uses 'US'. Optional to provide. |
|
- language (str, optional): ISO 639-1 language code for article language, by default uses 'en'. Optional to provide. |
|
- max_results (int, optional): Maximum number of articles to return, by default, uses 5. Optional to provide. |
|
|
|
Returns: |
|
- list[str]: A list of strings, each representing an article. Each string contains the article's heading and URL. |
|
""" |
|
``` |
|
|
|
# AWQ Quantization |
|
|
|
Input Python example: |
|
|
|
```python |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer |
|
from transformers import AutoTokenizer, GemmaForCausalLM |
|
import torch |
|
import time |
|
import numpy as np |
|
|
|
def inference(input_text): |
|
|
|
tokens = tokenizer( |
|
input_text, |
|
return_tensors='pt' |
|
).input_ids.cuda() |
|
|
|
start_time = time.time() |
|
generation_output = model.generate( |
|
tokens, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
top_k=40, |
|
max_new_tokens=512 |
|
) |
|
end_time = time.time() |
|
|
|
res = tokenizer.decode(generation_output[0]) |
|
res = res.split(input_text) |
|
latency = end_time - start_time |
|
output_tokens = tokenizer.encode(res) |
|
num_output_tokens = len(output_tokens) |
|
throughput = num_output_tokens / latency |
|
|
|
return {"output": res[-1], "latency": latency, "throughput": throughput} |
|
|
|
|
|
model_id = "path/to/Octopus-v2-AWQ" |
|
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True, |
|
trust_remote_code=False, safetensors=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False) |
|
|
|
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"] |
|
|
|
avg_throughput = [] |
|
for prompt in prompts: |
|
out = inference(prompt) |
|
avg_throughput.append(out["throughput"]) |
|
print("nexa model result:\n", out["output"]) |
|
|
|
print("avg throughput:", np.mean(avg_throughput)) |
|
``` |
|
|
|
## Quantized GGUF & AWQ Models |
|
|
|
| Name | Quant method | Bits | Size | Response (t/s) | Use Cases | |
|
| ---------------------- | ------------ | ---- | -------- | -------------- | ----------------------------------- | |
|
| Octopus-v2-AWQ | AWQ | 4 | 3.00 GB | 63.83 | fast, high quality, recommended | |
|
| Octopus-v2-Q2_K.gguf | Q2_K | 2 | 1.16 GB | 57.81 | fast but high loss, not recommended | |
|
| Octopus-v2-Q3_K.gguf | Q3_K | 3 | 1.38 GB | 57.81 | extremely not recommended | |
|
| Octopus-v2-Q3_K_S.gguf | Q3_K_S | 3 | 1.19 GB | 52.13 | extremely not recommended | |
|
| Octopus-v2-Q3_K_M.gguf | Q3_K_M | 3 | 1.38 GB | 58.67 | moderate loss, not very recommended | |
|
| Octopus-v2-Q3_K_L.gguf | Q3_K_L | 3 | 1.47 GB | 56.92 | not very recommended | |
|
| Octopus-v2-Q4_0.gguf | Q4_0 | 4 | 1.55 GB | 68.80 | moderate speed, recommended | |
|
| Octopus-v2-Q4_1.gguf | Q4_1 | 4 | 1.68 GB | 68.09 | moderate speed, recommended | |
|
| Octopus-v2-Q4_K.gguf | Q4_K | 4 | 1.63 GB | 64.70 | moderate speed, recommended | |
|
| Octopus-v2-Q4_K_S.gguf | Q4_K_S | 4 | 1.56 GB | 62.16 | fast and accurate, very recommended | |
|
| Octopus-v2-Q4_K_M.gguf | Q4_K_M | 4 | 1.63 GB | 64.74 | fast, recommended | |
|
| Octopus-v2-Q5_0.gguf | Q5_0 | 5 | 1.80 GB | 64.80 | fast, recommended | |
|
| Octopus-v2-Q5_1.gguf | Q5_1 | 5 | 1.92 GB | 63.42 | very big, prefer Q4 | |
|
| Octopus-v2-Q5_K.gguf | Q5_K | 5 | 1.84 GB | 61.28 | big, recommended | |
|
| Octopus-v2-Q5_K_S.gguf | Q5_K_S | 5 | 1.80 GB | 62.16 | big, recommended | |
|
| Octopus-v2-Q5_K_M.gguf | Q5_K_M | 5 | 1.71 GB | 61.54 | big, recommended | |
|
| Octopus-v2-Q6_K.gguf | Q6_K | 6 | 2.06 GB | 55.94 | very big, not very recommended | |
|
| Octopus-v2-Q8_0.gguf | Q8_0 | 8 | 2.67 GB | 56.35 | very big, not very recommended | |
|
| Octopus-v2-f16.gguf | f16 | 16 | 5.02 GB | 36.27 | extremely big | |
|
| Octopus-v2.gguf | | | 10.00 GB | | | |
|
|
|
_Quantized with llama.cpp_ |
|
|
|
|
|
**Acknowledgement**: |
|
We sincerely thank our community members, [Mingyuan](https://huggingface.co/ThunderBeee), [Zoey](https://huggingface.co/ZY6), [Brian](https://huggingface.co/JoyboyBrian), [Perry](https://huggingface.co/PerryCheng614), [Qi](https://huggingface.co/qiqiWav), [David](https://huggingface.co/Davidqian123) for their extraordinary contributions to this quantization effort. |
|
|
|
|