Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - eec2a5f64d58ba2f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/eec2a5f64d58ba2f_train_data.json
  type:
    field_input: persona
    field_instruction: input
    field_output: target
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Nexspear/1a0aa2c9-7503-440e-b8d5-aa9078e35c84
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/eec2a5f64d58ba2f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 1a0aa2c9-7503-440e-b8d5-aa9078e35c84
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 1a0aa2c9-7503-440e-b8d5-aa9078e35c84
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

1a0aa2c9-7503-440e-b8d5-aa9078e35c84

This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0187 1 10.3801
10.3792 0.0935 5 10.3799
10.3787 0.1869 10 10.3790
10.3784 0.2804 15 10.3777
10.3767 0.3738 20 10.3762
10.3739 0.4673 25 10.3745
10.3719 0.5607 30 10.3727
10.3714 0.6542 35 10.3712
10.3694 0.7477 40 10.3701
10.3692 0.8411 45 10.3697
10.3696 0.9346 50 10.3696

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
32
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Nexspear/1a0aa2c9-7503-440e-b8d5-aa9078e35c84

Adapter
(130)
this model