See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f01fed07670c5379_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f01fed07670c5379_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/e1729cec-1158-465c-80af-cf1fcb732574
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/f01fed07670c5379_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 10ca5ef2-ff17-476a-92a2-d039d8d05243
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 10ca5ef2-ff17-476a-92a2-d039d8d05243
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
e1729cec-1158-465c-80af-cf1fcb732574
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 1.1609 |
1.0855 | 0.0063 | 42 | 1.1297 |
1.0373 | 0.0126 | 84 | 1.1157 |
1.177 | 0.0189 | 126 | 1.1069 |
1.1124 | 0.0252 | 168 | 1.1012 |
1.0302 | 0.0315 | 210 | 1.0972 |
1.1041 | 0.0378 | 252 | 1.0943 |
1.0171 | 0.0440 | 294 | 1.0924 |
1.0916 | 0.0503 | 336 | 1.0907 |
1.0477 | 0.0566 | 378 | 1.0897 |
1.1333 | 0.0629 | 420 | 1.0891 |
1.1253 | 0.0692 | 462 | 1.0889 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Nexspear/e1729cec-1158-465c-80af-cf1fcb732574
Base model
TinyLlama/TinyLlama-1.1B-Chat-v0.6