File size: 7,405 Bytes
8f19dbd
 
 
 
 
0387d47
8f19dbd
 
 
0387d47
 
 
 
 
8f19dbd
 
 
 
 
 
 
 
 
 
0387d47
8f19dbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- data/zephyr_uf_rlced_conifer_ref
model-index:
- name: zephyr-7b-uf-rlced-conifer-group-dpo-2e-alr-0.01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-uf-rlced-conifer-group-dpo-2e-alr-0.01

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the data/zephyr_uf_rlced_conifer_ref dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2395
- Rewards/chosen: -2.8511
- Rewards/rejected: -8.5888
- Rewards/accuracies: 0.8778
- Rewards/margins: 5.7377
- Logps/rejected: -1262.6172
- Logps/chosen: -677.5837
- Logits/rejected: 3.8778
- Logits/chosen: 1.9376
- Excess Loss: 0.0374
- Alpha 0 Uf: 0.5116
- Alpha 1 Rlced Conifer: 0.4884
- Rewards/chosen 1 Rlced Conifer: -3.0535
- Rewards/rejected 1 Rlced Conifer: -10.0348
- Rewards/accuracies 1 Rlced Conifer: 0.9097
- Rewards/margins 1 Rlced Conifer: 6.9812
- Logps/rejected 1 Rlced Conifer: -1451.0132
- Logps/chosen 1 Rlced Conifer: -728.9337
- Logits/rejected 1 Rlced Conifer: 3.5676
- Logits/chosen 1 Rlced Conifer: 1.5730
- Task Loss 1 Rlced Conifer: 0.1787
- Task Excess Loss 1 Rlced Conifer: 0.0427
- Rewards/chosen 0 Uf: -2.0820
- Rewards/rejected 0 Uf: -3.4336
- Rewards/accuracies 0 Uf: 0.7633
- Rewards/margins 0 Uf: 1.3516
- Logps/rejected 0 Uf: -584.9677
- Logps/chosen 0 Uf: -497.4562
- Logits/rejected 0 Uf: 5.1753
- Logits/chosen 0 Uf: 3.1000
- Task Loss 0 Uf: 0.5185
- Task Excess Loss 0 Uf: 0.0724

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Excess Loss | Alpha 0 Uf | Alpha 1 Rlced Conifer | Rewards/chosen 1 Rlced Conifer | Rewards/rejected 1 Rlced Conifer | Rewards/accuracies 1 Rlced Conifer | Rewards/margins 1 Rlced Conifer | Logps/rejected 1 Rlced Conifer | Logps/chosen 1 Rlced Conifer | Logits/rejected 1 Rlced Conifer | Logits/chosen 1 Rlced Conifer | Task Loss 1 Rlced Conifer | Task Excess Loss 1 Rlced Conifer | Rewards/chosen 0 Uf | Rewards/rejected 0 Uf | Rewards/accuracies 0 Uf | Rewards/margins 0 Uf | Logps/rejected 0 Uf | Logps/chosen 0 Uf | Logits/rejected 0 Uf | Logits/chosen 0 Uf | Task Loss 0 Uf | Task Excess Loss 0 Uf |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:-----------:|:----------:|:---------------------:|:------------------------------:|:--------------------------------:|:----------------------------------:|:-------------------------------:|:------------------------------:|:----------------------------:|:-------------------------------:|:-----------------------------:|:-------------------------:|:--------------------------------:|:-------------------:|:---------------------:|:-----------------------:|:--------------------:|:-------------------:|:-----------------:|:--------------------:|:------------------:|:--------------:|:---------------------:|
| 0.1689        | 0.4997 | 360  | 0.2674          | -2.2066        | -5.7976          | 0.8656             | 3.5910          | -983.4942      | -613.1316    | 1.9639          | 0.4895        | 0.0642      | 0.5765     | 0.4235                | -2.3017                        | -6.6520                          | 0.8965                             | 4.3503                          | -1112.7397                     | -653.7553                    | 1.7066                          | 0.1879                        | 0.2091                    | 0.0748                           | -1.8461             | -2.7792               | 0.7426                  | 0.9330               | -519.5245           | -473.8738         | 3.0556               | 1.4702             | 0.5392         | 0.0891                |
| 0.1413        | 0.9993 | 720  | 0.2485          | -2.0138        | -6.1196          | 0.8741             | 4.1059          | -1015.6987     | -593.8471    | 2.5252          | 1.3345        | 0.0465      | 0.6417     | 0.3583                | -2.0972                        | -7.0507                          | 0.9047                             | 4.9535                          | -1152.6036                     | -633.2974                    | 2.1536                          | 1.0120                        | 0.1925                    | 0.0584                           | -1.6822             | -2.7943               | 0.7670                  | 1.1121               | -521.0374           | -457.4840         | 4.0168               | 2.3771             | 0.4989         | 0.0595                |
| 0.0671        | 1.4990 | 1080 | 0.2408          | -2.5432        | -7.7524          | 0.8741             | 5.2092          | -1178.9786     | -646.7894    | 3.9871          | 2.3348        | 0.0389      | 0.5284     | 0.4716                | -2.6717                        | -8.9931                          | 0.9071                             | 6.3215                          | -1346.8500                     | -690.7497                    | 3.5948                          | 1.9516                        | 0.1822                    | 0.0462                           | -2.0401             | -3.3250               | 0.7500                  | 1.2849               | -574.1076           | -493.2740         | 5.5773               | 3.5557             | 0.5197         | 0.0655                |
| 0.0649        | 1.9986 | 1440 | 0.2395          | -2.8511        | -8.5888          | 0.8778             | 5.7377          | -1262.6172     | -677.5837    | 3.8778          | 1.9376        | 0.0374      | 0.5116     | 0.4884                | -3.0535                        | -10.0348                         | 0.9097                             | 6.9812                          | -1451.0132                     | -728.9337                    | 3.5676                          | 1.5730                        | 0.1787                    | 0.0427                           | -2.0820             | -3.4336               | 0.7633                  | 1.3516               | -584.9677           | -497.4562         | 5.1753               | 3.1000             | 0.5185         | 0.0724                |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.21.0
- Tokenizers 0.19.1