distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3539
  • Accuracy: 0.91

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2281 1.0 112 2.1128 0.26
1.7082 2.0 225 1.6252 0.52
1.267 3.0 337 1.3100 0.54
1.1791 4.0 450 1.0496 0.71
1.1765 5.0 562 0.8928 0.74
0.5714 6.0 675 0.8298 0.77
0.4869 7.0 787 0.7145 0.79
0.4967 8.0 900 0.6990 0.82
0.8314 9.0 1012 0.5657 0.83
0.4633 10.0 1125 0.4589 0.89
0.5547 11.0 1237 0.4919 0.86
0.4827 12.0 1350 0.4069 0.92
0.324 13.0 1462 0.4634 0.87
0.5224 14.0 1575 0.4419 0.86
0.1873 15.0 1687 0.3988 0.89
0.2852 16.0 1800 0.3788 0.9
0.3169 17.0 1912 0.3526 0.89
0.4491 17.92 2016 0.3539 0.91

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NicolasDenier/distilhubert-finetuned-gtzan

Finetuned
(428)
this model
Finetunes
1 model

Dataset used to train NicolasDenier/distilhubert-finetuned-gtzan

Evaluation results