NicolasDenier commited on
Commit
b48724c
·
1 Parent(s): a0815b8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -10
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distilhubert-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 0.7834
21
- - eval_accuracy: 0.78
22
- - eval_runtime: 46.4733
23
- - eval_samples_per_second: 2.152
24
- - eval_steps_per_second: 0.538
25
- - epoch: 12.0
26
- - step: 1350
27
 
28
  ## Model description
29
 
@@ -51,11 +61,22 @@ The following hyperparameters were used during training:
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 15
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ### Framework versions
57
 
58
  - Transformers 4.32.0.dev0
59
- - Pytorch 2.0.1+cu117
60
  - Datasets 2.13.1
61
  - Tokenizers 0.13.3
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6064
36
+ - Accuracy: 0.85
 
 
 
 
 
37
 
38
  ## Model description
39
 
 
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 5
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.9939 | 1.0 | 112 | 0.7660 | 0.77 |
71
+ | 0.777 | 2.0 | 225 | 0.6270 | 0.81 |
72
+ | 0.6878 | 3.0 | 337 | 0.5810 | 0.82 |
73
+ | 0.5696 | 4.0 | 450 | 0.5826 | 0.85 |
74
+ | 0.4433 | 4.98 | 560 | 0.6064 | 0.85 |
75
+
76
 
77
  ### Framework versions
78
 
79
  - Transformers 4.32.0.dev0
80
+ - Pytorch 2.0.1+cu118
81
  - Datasets 2.13.1
82
  - Tokenizers 0.13.3