NicolasDenier commited on
Commit
e56d4ff
·
1 Parent(s): 534f3fc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6064
36
- - Accuracy: 0.85
37
 
38
  ## Model description
39
 
@@ -67,11 +67,11 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 0.9939 | 1.0 | 112 | 0.7660 | 0.77 |
71
- | 0.777 | 2.0 | 225 | 0.6270 | 0.81 |
72
- | 0.6878 | 3.0 | 337 | 0.5810 | 0.82 |
73
- | 0.5696 | 4.0 | 450 | 0.5826 | 0.85 |
74
- | 0.4433 | 4.98 | 560 | 0.6064 | 0.85 |
75
 
76
 
77
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.84
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5888
36
+ - Accuracy: 0.84
37
 
38
  ## Model description
39
 
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.6634 | 1.0 | 112 | 0.5922 | 0.85 |
71
+ | 0.7302 | 2.0 | 225 | 0.6102 | 0.83 |
72
+ | 0.4642 | 3.0 | 337 | 0.4948 | 0.83 |
73
+ | 0.4121 | 4.0 | 450 | 0.5297 | 0.88 |
74
+ | 0.2822 | 4.98 | 560 | 0.5888 | 0.84 |
75
 
76
 
77
  ### Framework versions