tags: | |
- fraud-detection | |
- random-forest | |
- sklearn | |
library_name: sklearn | |
pipeline_tag: tabular-classification | |
# Random Forest Fraud Detection Model | |
This model uses Random Forest classification to detect potential fraud based on various account and transaction features. | |
## Model Description | |
- **Input Features:** | |
- Account Age (months) | |
- Frequency of credential changes (per year) | |
- Return to Order ratio | |
- VPN/Temp Mail usage (binary) | |
- Credit Score | |
- **Output:** Binary classification (Fraud/Not Fraud) | |
- **Type:** Random Forest Classifier | |
## Usage | |
```python | |
import joblib | |
import numpy as np | |
# Load model and scaler | |
model = joblib.load('random_forest_model.joblib') | |
scaler = joblib.load('rf_scaler.joblib') | |
# Prepare input (example) | |
input_data = np.array([[25, 0.5, 0.4, 0, 800]]) | |
# Scale input | |
scaled_input = scaler.transform(input_data) | |
# Get prediction | |
prediction = model.predict(scaled_input) | |
probability = model.predict_proba(scaled_input) | |
``` | |
## Limitations and Bias | |
This model should be used as part of a larger fraud detection system and not in isolation. | |