NikitaBaramiia commited on
Commit
20c227d
·
1 Parent(s): 92544c2

Upload PPO LunarLander-v2 trained agent (new version)

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 273.28 +/- 24.01
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.67 +/- 19.29
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69944ed170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69944ed200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69944ed290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69944ed320>", "_build": "<function ActorCriticPolicy._build at 0x7f69944ed3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f69944ed440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69944ed4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69944ed560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69944ed5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69944ed680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69944ed710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f69944c7120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665910600223060125, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMDCz4Vljk+7nhevsqGLr5kyOK8Su4RvQAAAAAAAAAAs+sJPlncbz/lJ1Q+6SDYvu36Aj6GX9m8AAAAAAAAAAAz5iK99pgrurterLFEkziqpD1/Ozua8TIAAIA/AACAP6aU2T3LzYc+97SmvgFffr45H3e97m0APQAAAAAAAAAAGjkBvde6SLtTShY8G2uTPAARZjxASH29AACAPwAAgD8AGmg9Mfx2Pim1Sr2ZRWG+zttYPAd0FL0AAAAAAAAAAK0Sl77IZCU/9Y12vYLivb780HW+MOcePQAAAAAAAAAATRhRPRsU7j4z7gw9a+CTvqTwgTxgsRK9AAAAAAAAAADN+yY918QmuzJ+aD3Ajzc9y0kuPGQPDb4AAIA/AACAP82GXD0YOcU+BpLaPQBQk75aInM9eKTWuwAAAAAAAAAAZjIfPaeeFT7+42++YGBWvj4Shr3YCWc9AAAAAAAAAADT8EI+bgS+PgOub76mLGG+SuZ2PbIULb0AAAAAAAAAAGZtL73h2Mm6+/z+PAvjJLxcSYy6yGP/vAAAgD8AAIA/GmduPc+6gj9QCYo9RR8Av9PTPD2YbXg8AAAAAAAAAAAaxRu9uwmHvIVcOT1uOiA8g2PnvRe9BT0AAIA/AACAPzMu0DxogMY9n6wPvghagL7d03y9XDnBvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbUxBc0CUhpRSlIwBbJRNDQGMAXSUR0CQ9TxAB1cMdX2UKGgGaAloD0MIN1SM83dWcUCUhpRSlGgVTUUBaBZHQJD1e4nWrfd1fZQoaAZoCWgPQwjvq3Kh8tVtQJSGlFKUaBVNEAFoFkdAkPXFS4vvjXV9lChoBmgJaA9DCMBcixYgzW5AlIaUUpRoFUvnaBZHQJD12qWC2+h1fZQoaAZoCWgPQwgxfhr35nRvQJSGlFKUaBVL+mgWR0CQ9yB7NSqEdX2UKGgGaAloD0MI/gsEAbLCcECUhpRSlGgVTQ8BaBZHQJD30Oc2BJ91fZQoaAZoCWgPQwijdOlfUjBwQJSGlFKUaBVNCAFoFkdAkPf53os7MnV9lChoBmgJaA9DCITzqWPVFHBAlIaUUpRoFUv8aBZHQJD4TeWOZLJ1fZQoaAZoCWgPQwhIGAYs+TdxQJSGlFKUaBVL+mgWR0CQ+hQyyleodX2UKGgGaAloD0MIsOWV621ScECUhpRSlGgVS+toFkdAkPqBJVbRnnV9lChoBmgJaA9DCL00RYBTwnJAlIaUUpRoFU0JAWgWR0CQ+ob+tKZldX2UKGgGaAloD0MIRQ2mYXgYb0CUhpRSlGgVS+loFkdAkPqkT+NtInV9lChoBmgJaA9DCD874Lqi4nBAlIaUUpRoFUv9aBZHQJD63GEPDpF1fZQoaAZoCWgPQwiQ3QVKimxyQJSGlFKUaBVL/WgWR0CQ+2be/Ho6dX2UKGgGaAloD0MI443MIz9McECUhpRSlGgVTQkBaBZHQJD7cOUdJat1fZQoaAZoCWgPQwi/tRMloc1vQJSGlFKUaBVNDQFoFkdAkPuXwG4ZuXV9lChoBmgJaA9DCNfdPNXhuXBAlIaUUpRoFUvzaBZHQJD7omTkhid1fZQoaAZoCWgPQwgHKA01CihwQJSGlFKUaBVNCAFoFkdAkPvdr0rbxnV9lChoBmgJaA9DCJYjZCAP83BAlIaUUpRoFUv2aBZHQJD8BvqC6H11fZQoaAZoCWgPQwimQjwSr1lsQJSGlFKUaBVL+GgWR0CQ/CY02tMgdX2UKGgGaAloD0MIriglBKtFckCUhpRSlGgVS+BoFkdAkP4fUONHY3V9lChoBmgJaA9DCNMwfESM/nBAlIaUUpRoFU0bAWgWR0CQ/mYigTRIdX2UKGgGaAloD0MISIld29sxckCUhpRSlGgVTRsBaBZHQJD/Vhx5s0p1fZQoaAZoCWgPQwj+R6ZDp/FGQJSGlFKUaBVL3mgWR0CRACtG/etTdX2UKGgGaAloD0MI8iiV8ESWckCUhpRSlGgVS+xoFkdAkQA1n7Hhj3V9lChoBmgJaA9DCBnHSPaI33FAlIaUUpRoFU1EAWgWR0CRAFz5GjKxdX2UKGgGaAloD0MICf8iaAxGcUCUhpRSlGgVS+hoFkdAkQDMb3oLX3V9lChoBmgJaA9DCNi5aTNON3NAlIaUUpRoFU0AAWgWR0CRASYKIBRydX2UKGgGaAloD0MINKDejBrKbUCUhpRSlGgVS/xoFkdAkQEmQwK0D3V9lChoBmgJaA9DCMb5m1CIkG5AlIaUUpRoFUvuaBZHQJEBruOS4e91fZQoaAZoCWgPQwjwvioXaidzQJSGlFKUaBVL7GgWR0CRAjsTWXkYdX2UKGgGaAloD0MIFD5bBwf5TUCUhpRSlGgVTQABaBZHQJECYniNsFd1fZQoaAZoCWgPQwjRQCybucxwQJSGlFKUaBVNEQFoFkdAkQJi+g13uHV9lChoBmgJaA9DCICAtWoXfHFAlIaUUpRoFU0BAWgWR0CRAo90ihWYdX2UKGgGaAloD0MI/TGtTSN4cUCUhpRSlGgVTRoBaBZHQJECiojv/ip1fZQoaAZoCWgPQwgYIqevZ8dyQJSGlFKUaBVNTQFoFkdAkQPPgNwzcnV9lChoBmgJaA9DCCvZsRGIN29AlIaUUpRoFU0DAWgWR0CRBLW0qpcYdX2UKGgGaAloD0MIqTKMu0GyckCUhpRSlGgVTTcBaBZHQJESyeVcD8t1fZQoaAZoCWgPQwhKsg5H1zlwQJSGlFKUaBVNGQFoFkdAkRLvgeii7HV9lChoBmgJaA9DCDs6rkb2gHFAlIaUUpRoFUv4aBZHQJES/tqpLmJ1fZQoaAZoCWgPQwhS0sPQ6h5wQJSGlFKUaBVNBgFoFkdAkRNBMewLVnV9lChoBmgJaA9DCK/S3XU2c3BAlIaUUpRoFUvwaBZHQJETlZZB9kV1fZQoaAZoCWgPQwgnofSFEKttQJSGlFKUaBVNCwFoFkdAkRQECzTnaHV9lChoBmgJaA9DCMl06PQ8jG1AlIaUUpRoFU0EAWgWR0CRFC8xbjcVdX2UKGgGaAloD0MI1sVtNMCecECUhpRSlGgVTSsBaBZHQJEUTrX18LN1fZQoaAZoCWgPQwiqKjQQy9FxQJSGlFKUaBVL4WgWR0CRFIHv+fh/dX2UKGgGaAloD0MI7nvUX+98cUCUhpRSlGgVTREBaBZHQJEU/+cYqG11fZQoaAZoCWgPQwj9wcBzr59wQJSGlFKUaBVL8WgWR0CRFRptrKvFdX2UKGgGaAloD0MIog3ABkRrb0CUhpRSlGgVS/9oFkdAkRUYXj2i+XV9lChoBmgJaA9DCMHHYMVpvHBAlIaUUpRoFUvyaBZHQJEVHKwIMSd1fZQoaAZoCWgPQwgjTFEuzYFxQJSGlFKUaBVNEAFoFkdAkRWRdY4hlnV9lChoBmgJaA9DCOxph7/mF3NAlIaUUpRoFUv4aBZHQJEWXMpw0fp1fZQoaAZoCWgPQwiNX3glCQ9yQJSGlFKUaBVL9WgWR0CRFyOfdyksdX2UKGgGaAloD0MIuOhkqXVicECUhpRSlGgVS/RoFkdAkRj+Lehwl3V9lChoBmgJaA9DCCxhbYwdPnFAlIaUUpRoFUv8aBZHQJEZHJ4jbBZ1fZQoaAZoCWgPQwjwwADCB4ttQJSGlFKUaBVNBgFoFkdAkRmkwBYFJXV9lChoBmgJaA9DCLa93ZLc7HFAlIaUUpRoFUvzaBZHQJEZq12JSBN1fZQoaAZoCWgPQwiuu3mqQ4htQJSGlFKUaBVNAwFoFkdAkRnSWRigCnV9lChoBmgJaA9DCAIMy5/vVW5AlIaUUpRoFUvsaBZHQJEZ5UhmoR91fZQoaAZoCWgPQwgFa5xNB8lwQJSGlFKUaBVL82gWR0CRGjnrY5DJdX2UKGgGaAloD0MIPQ/uzto9cECUhpRSlGgVS/xoFkdAkRqQyVObiXV9lChoBmgJaA9DCLag98ZQ7XJAlIaUUpRoFU0NAWgWR0CRGzY7aIvbdX2UKGgGaAloD0MI5L9AEKC4bkCUhpRSlGgVS/poFkdAkRtXGS6lL3V9lChoBmgJaA9DCIdu9gdKwW5AlIaUUpRoFU0JAWgWR0CRG6DVH4GmdX2UKGgGaAloD0MIwY7/AoGxckCUhpRSlGgVS+5oFkdAkRuhciW3SnV9lChoBmgJaA9DCMjqVs+J6nJAlIaUUpRoFU0QAWgWR0CRG+kTpPhydX2UKGgGaAloD0MIxQH0+74HcECUhpRSlGgVTSgBaBZHQJEcbMibDuV1fZQoaAZoCWgPQwitwfuq3IVyQJSGlFKUaBVNIgFoFkdAkR3IiLVFyHV9lChoBmgJaA9DCBLb3QP0u25AlIaUUpRoFU0dAWgWR0CRHqM5wOvudX2UKGgGaAloD0MIsDvdeWKdcECUhpRSlGgVS/9oFkdAkR++qNp/PXV9lChoBmgJaA9DCAO2gxE7InNAlIaUUpRoFUvuaBZHQJEf2JsO5J91fZQoaAZoCWgPQwjo+GhxRmRtQJSGlFKUaBVL9WgWR0CRIBNDc/MXdX2UKGgGaAloD0MIQUmBBXBHckCUhpRSlGgVS/BoFkdAkSAUMTewcHV9lChoBmgJaA9DCEAv3Lkw3HFAlIaUUpRoFU0UAWgWR0CRIHhBZ6lddX2UKGgGaAloD0MIoSx8fW1ZcECUhpRSlGgVS/ZoFkdAkSCn9ehPCXV9lChoBmgJaA9DCLVtGAVBsHFAlIaUUpRoFUvvaBZHQJEg0cNpdrx1fZQoaAZoCWgPQwguGjIepfVvQJSGlFKUaBVL5GgWR0CRIUHG0eEJdX2UKGgGaAloD0MIfPKwUKsHcUCUhpRSlGgVS/1oFkdAkSG96PbO/3V9lChoBmgJaA9DCKzj+KGSdHFAlIaUUpRoFU01AWgWR0CRIdwz+FURdX2UKGgGaAloD0MIfGMIAE7uckCUhpRSlGgVS+xoFkdAkSH8U/OdG3V9lChoBmgJaA9DCLmJWpobQ3FAlIaUUpRoFU0GAWgWR0CRIk/HHWBjdX2UKGgGaAloD0MI14o2x7m1cUCUhpRSlGgVTSoBaBZHQJEjIy/KyOd1fZQoaAZoCWgPQwjPukbLAbVxQJSGlFKUaBVNHQFoFkdAkSOs+u/1x3V9lChoBmgJaA9DCJWdflAXRXJAlIaUUpRoFUvuaBZHQJEj8A2hqTN1fZQoaAZoCWgPQwg25+CZ0BBxQJSGlFKUaBVL6mgWR0CRJIVRk3CLdX2UKGgGaAloD0MIA5SGGkVrcUCUhpRSlGgVS/xoFkdAkSX//rB0p3V9lChoBmgJaA9DCMcS1sZYz3BAlIaUUpRoFU0LAWgWR0CRJodvbXYldX2UKGgGaAloD0MIppcYyzTxcECUhpRSlGgVTQwBaBZHQJEmyXnhbW51fZQoaAZoCWgPQwjM7PMYpRlxQJSGlFKUaBVNAwFoFkdAkSbuqzZ6EHV9lChoBmgJaA9DCIKPwYoT/XBAlIaUUpRoFUv3aBZHQJEm+/k/8l51fZQoaAZoCWgPQwhtVn2u9l1zQJSGlFKUaBVNBwFoFkdAkSc4lyBClnV9lChoBmgJaA9DCMjQsYPK83JAlIaUUpRoFU0jAWgWR0CRJ2HmRvFWdX2UKGgGaAloD0MIbXAi+vVgckCUhpRSlGgVS/5oFkdAkSg//JeVs3V9lChoBmgJaA9DCHNIaqHk929AlIaUUpRoFUv8aBZHQJEoW2uxKQJ1fZQoaAZoCWgPQwiKyLCK91VwQJSGlFKUaBVNBwFoFkdAkShgr+YMOXV9lChoBmgJaA9DCDBntiu0Z3BAlIaUUpRoFU0qAWgWR0CRKLiuMdcTdX2UKGgGaAloD0MIMQqCxzcAcUCUhpRSlGgVTRkBaBZHQJEpXfJmukl1fZQoaAZoCWgPQwj6Jk2DooJwQJSGlFKUaBVNFAFoFkdAkSorm6oVEnV9lChoBmgJaA9DCETdByA1c3BAlIaUUpRoFU0PAWgWR0CRKuDfm9xqdX2UKGgGaAloD0MIOxixT4AgcUCUhpRSlGgVTRwBaBZHQJEq8eFL39J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b19dd2e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b19dd2ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b19dd2f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b19dd6040>", "_build": "<function ActorCriticPolicy._build at 0x7f6b19dd60d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b19dd6160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b19dd61f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b19dd6280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b19dd6310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b19dd63a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b19dd6430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b19dd64c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6b19dcd1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673790264546508833, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBJk73fAIY+9b4LPi7tdL6WdhE9hq8YvQAAAAAAAAAAZrZSPD2zBjzSAaS8EK5evviWtDztI/M7AAAAAAAAAACaBsy8aTkTvPIriz3JR4G9V8bMvCG7lL4AAIA/AACAP43rrL1ca2S6/PeguSYXo7RGa0S7Rsu8OAAAAAAAAIA/momgur6WsT89H+W8bx6avqHfQbtyKri8AAAAAAAAAAAzif09CA+0Ph1boL0MJli+wlHOPNyhhL0AAAAAAAAAAGabRD1ccxS8UEARvR0kcjx6ToQ91gNLvQAAgD8AAIA/4GsePgcXNz8rRea9G5aKvtR9vT0rNji9AAAAAAAAAAAz2PG8nIHFPrIcmr0Q3Hi+601CvTj2SjwAAAAAAAAAAABy/DzpWQI9dQ/zvOFUbL7w1YI8UokpuwAAAAAAAAAAAKQyPDgYnLuLmJK8Mk8MPdcMCL3gfeg9AACAPwAAgD+zDeG9q0RBP5yhuD0ZYZC+WEkKvSscHj0AAAAAAAAAACajtL0UDpC6khr2NhJbFTJ01QY7nl0PtgAAAAAAAIA/MytkPA/kJT6wPuO9VqdrvmWAvbyzvwc7AAAAAAAAAADNxAm9T1gfvEZJO71HCVm8CViaPRkeoz4AAIA/AACAP5oWtLzUvOI90moSPpGOcb51qDc9lUZbPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBfuXJhycUCUhpRSlIwBbJRNKgGMAXSUR0CMsPXlKbrkdX2UKGgGaAloD0MIbw1slSA8c0CUhpRSlGgVTQ8BaBZHQIyx88/2TPl1fZQoaAZoCWgPQwhjR+NQv7dvQJSGlFKUaBVL/2gWR0CMs1acI7eVdX2UKGgGaAloD0MIIlSp2cMpcECUhpRSlGgVTUQBaBZHQIy0KLsKLKp1fZQoaAZoCWgPQwgM6IU7V+JwQJSGlFKUaBVNNAFoFkdAjLVL4vexfXV9lChoBmgJaA9DCO244XfTHnJAlIaUUpRoFU0XAWgWR0CMtVz/ZM+NdX2UKGgGaAloD0MI75HNVbNnckCUhpRSlGgVTRkBaBZHQIy1lGPPszF1fZQoaAZoCWgPQwgMdsO2xRBvQJSGlFKUaBVNIQFoFkdAjLZafzz3AXV9lChoBmgJaA9DCNi8qrNaknBAlIaUUpRoFU00AWgWR0CMt0oMKCxvdX2UKGgGaAloD0MILPUsCGXpcECUhpRSlGgVTRcBaBZHQIy5JYgaFVV1fZQoaAZoCWgPQwhVMCqpk1RwQJSGlFKUaBVNOgFoFkdAjLobsWweNnV9lChoBmgJaA9DCFExzt8EInFAlIaUUpRoFU0rAWgWR0CMuxqbBoEkdX2UKGgGaAloD0MIEaeTbPWQYkCUhpRSlGgVTegDaBZHQIy7+rn1WbR1fZQoaAZoCWgPQwhKQ41CEv1tQJSGlFKUaBVNCAFoFkdAjL8kzGgi/3V9lChoBmgJaA9DCJ0rSglB1nJAlIaUUpRoFU08AWgWR0CMvzlXiiqRdX2UKGgGaAloD0MID2CRX/9Qc0CUhpRSlGgVTQwBaBZHQIy/3ShJyyV1fZQoaAZoCWgPQwhENSVZB2JyQJSGlFKUaBVNAAFoFkdAjMHoOhCdBnV9lChoBmgJaA9DCKW8VkJ3+21AlIaUUpRoFU0XAWgWR0CMxBmh/RVqdX2UKGgGaAloD0MI6ZrJNxvhcUCUhpRSlGgVTQ4BaBZHQIzEm/etSyd1fZQoaAZoCWgPQwh7M2q+CnZyQJSGlFKUaBVNHQFoFkdAjMY74SHuZ3V9lChoBmgJaA9DCEhwI2WLxXFAlIaUUpRoFU0VAWgWR0CMxvKgZjx1dX2UKGgGaAloD0MIILJIE2/scUCUhpRSlGgVTRoBaBZHQIzHExmCiAV1fZQoaAZoCWgPQwjUCtP3GjJuQJSGlFKUaBVNEQFoFkdAjMdiGN70F3V9lChoBmgJaA9DCGzRArSt4G5AlIaUUpRoFU0pAWgWR0CMx9Bu4wyqdX2UKGgGaAloD0MIw6BMo8mycECUhpRSlGgVTQoBaBZHQIzJ9yLhrFh1fZQoaAZoCWgPQwg6I0p7Qx1xQJSGlFKUaBVNIQFoFkdAjMpnJT2nKnV9lChoBmgJaA9DCNQNFHin721AlIaUUpRoFU0JAWgWR0CMysQjD8+BdX2UKGgGaAloD0MI8PeL2ZKpcUCUhpRSlGgVTT0BaBZHQIzOWO0b9611fZQoaAZoCWgPQwio/dZO1EVwQJSGlFKUaBVNEQFoFkdAjM/EqUeMh3V9lChoBmgJaA9DCGluhbCa/25AlIaUUpRoFU0hAWgWR0CMz/vDP4VRdX2UKGgGaAloD0MIjdDP1OvtcUCUhpRSlGgVTSoBaBZHQIzQnmq5sj51fZQoaAZoCWgPQwhzafzCqxpvQJSGlFKUaBVNLAFoFkdAjNOtDD0lJHV9lChoBmgJaA9DCKmluRUC+XFAlIaUUpRoFU0JAWgWR0CM06wJw84hdX2UKGgGaAloD0MI2xSPi2prcUCUhpRSlGgVTSMBaBZHQIzVwTAWSEF1fZQoaAZoCWgPQwg+CAH5UjxyQJSGlFKUaBVNGwFoFkdAjNgzBRAKOXV9lChoBmgJaA9DCP1mYrqQg29AlIaUUpRoFU0zAWgWR0CM2KV5a/yodX2UKGgGaAloD0MIA9AoXbobcUCUhpRSlGgVTRsBaBZHQIzY2uq3mV91fZQoaAZoCWgPQwg7Hch6KkdzQJSGlFKUaBVNVQFoFkdAjNxJRGc4HXV9lChoBmgJaA9DCG2Oc5uwMXBAlIaUUpRoFU0cAWgWR0CM3NfKISDidX2UKGgGaAloD0MIxooaTEMIcUCUhpRSlGgVTTEBaBZHQIzdr1schkl1fZQoaAZoCWgPQwhoeR7cHStyQJSGlFKUaBVNOQFoFkdAjN8ipm29c3V9lChoBmgJaA9DCOhKBKr//mtAlIaUUpRoFU0aAWgWR0CM4X8TBZZCdX2UKGgGaAloD0MIAB5RoXp3ckCUhpRSlGgVTSIBaBZHQIzjotWdVed1fZQoaAZoCWgPQwgqb0c4LcxLQJSGlFKUaBVL6WgWR0CM4/4SHuZ1dX2UKGgGaAloD0MIyjUFMnv/cECUhpRSlGgVTRsBaBZHQIzkIF3Y+St1fZQoaAZoCWgPQwjfisQEdX9wQJSGlFKUaBVNOgFoFkdAjOVfm9xp+XV9lChoBmgJaA9DCGTmApeHVXJAlIaUUpRoFU0HAWgWR0CM5ci8nNPhdX2UKGgGaAloD0MIDM7g75eFcUCUhpRSlGgVTf0CaBZHQIznj2alUId1fZQoaAZoCWgPQwg4ZW6+0SJyQJSGlFKUaBVNJgJoFkdAjOnwBo24u3V9lChoBmgJaA9DCOv/HOZLN3FAlIaUUpRoFU0qAWgWR0CM6gEytV7ydX2UKGgGaAloD0MIMVuyKsIYcUCUhpRSlGgVTQQBaBZHQIzqWcWj4591fZQoaAZoCWgPQwjItDaNbRpxQJSGlFKUaBVNHAFoFkdAjQNmp++dsnV9lChoBmgJaA9DCIQtdvvshnFAlIaUUpRoFU1MAWgWR0CNBp2q1gIAdX2UKGgGaAloD0MIcF8Hztn7cECUhpRSlGgVTRABaBZHQI0HA8W9DhN1fZQoaAZoCWgPQwjO4zCYv4BxQJSGlFKUaBVNJgFoFkdAjQcRri2lVXV9lChoBmgJaA9DCEchyazez3JAlIaUUpRoFU1RAWgWR0CNDRqwhW5pdX2UKGgGaAloD0MIO3E5XoGycUCUhpRSlGgVTRkBaBZHQI0NuumrKeV1fZQoaAZoCWgPQwhWEW4yKgByQJSGlFKUaBVNHAFoFkdAjQ5TdtVJc3V9lChoBmgJaA9DCBvV6UBWBXBAlIaUUpRoFU0kAWgWR0CNDwZof0VadX2UKGgGaAloD0MIByY3imztcECUhpRSlGgVTU4BaBZHQI0PWruIAOt1fZQoaAZoCWgPQwgxthDkoKVuQJSGlFKUaBVNHgFoFkdAjQ/89W6shnV9lChoBmgJaA9DCIm2Y+pulnBAlIaUUpRoFU0ZAWgWR0CNECJdB0IUdX2UKGgGaAloD0MIZqAy/j1jcUCUhpRSlGgVTakBaBZHQI0Qm+49X911fZQoaAZoCWgPQwgot+17FMpwQJSGlFKUaBVNGwFoFkdAjRH0OEug6HV9lChoBmgJaA9DCOI9B5ajqnBAlIaUUpRoFU0QAWgWR0CNFRi8WbgCdX2UKGgGaAloD0MIpoEf1TAxcUCUhpRSlGgVTSwBaBZHQI0WBEpiI+J1fZQoaAZoCWgPQwjFjVvMzzpvQJSGlFKUaBVNMwFoFkdAjRYTOxB3R3V9lChoBmgJaA9DCAZGXtYE2XJAlIaUUpRoFU08AWgWR0CNFokDZDiPdX2UKGgGaAloD0MIahMn9/vDcUCUhpRSlGgVTSEBaBZHQI0ZImPYFq11fZQoaAZoCWgPQwjUu3g/LnRyQJSGlFKUaBVNMAFoFkdAjRpo+nqFAXV9lChoBmgJaA9DCL8NMV6zuHBAlIaUUpRoFU0zAWgWR0CNGqLhJiAldX2UKGgGaAloD0MIK/htiPFDbUCUhpRSlGgVTRoBaBZHQI0f0yad+Xt1fZQoaAZoCWgPQwjsMCb9/a9wQJSGlFKUaBVNGgFoFkdAjSHcnuy/sXV9lChoBmgJaA9DCCTvHMoQ5nFAlIaUUpRoFU1IAWgWR0CNIkao/A0sdX2UKGgGaAloD0MILdLEO4CBckCUhpRSlGgVTUUBaBZHQI0iq/0ulGh1fZQoaAZoCWgPQwjIsfUM4VdxQJSGlFKUaBVNMwFoFkdAjSMMZpBX0XV9lChoBmgJaA9DCGKh1jTvqm5AlIaUUpRoFU0qAWgWR0CNI0NtIkJKdX2UKGgGaAloD0MIWBr4UY00bkCUhpRSlGgVTUMBaBZHQI0jxlJ6IFh1fZQoaAZoCWgPQwg66ui4GjtOQJSGlFKUaBVL1WgWR0CNI+JC0F8pdX2UKGgGaAloD0MIwXPv4VIScECUhpRSlGgVTRoBaBZHQI0kNQVKwpx1fZQoaAZoCWgPQwhdb5upEOdtQJSGlFKUaBVNCQFoFkdAjSYHlnyup3V9lChoBmgJaA9DCDIFa5xNcXFAlIaUUpRoFU1UAWgWR0CNJi9nK4hEdX2UKGgGaAloD0MIQpWaPdBSckCUhpRSlGgVTSsBaBZHQI0oweRxLkF1fZQoaAZoCWgPQwhGJuDXyEFwQJSGlFKUaBVNLwFoFkdAjSl6rvLHMnV9lChoBmgJaA9DCOAO1CkPk3FAlIaUUpRoFU0mAWgWR0CNK9zmwJPZdX2UKGgGaAloD0MIQe+NIQBgbUCUhpRSlGgVTSUBaBZHQI0tE3Q2MsJ1fZQoaAZoCWgPQwgVONkGrohwQJSGlFKUaBVNJQFoFkdAjTWH9WIXTHV9lChoBmgJaA9DCC7lfLH3PWxAlIaUUpRoFU0mAWgWR0CNNhrO7g89dX2UKGgGaAloD0MI6gd1kQKOckCUhpRSlGgVTUYBaBZHQI02TBInSfF1fZQoaAZoCWgPQwgRUyKJnm5xQJSGlFKUaBVNIAFoFkdAjTZ4/Vy3kXV9lChoBmgJaA9DCIR+pl73q3BAlIaUUpRoFU0vAWgWR0CNN1AzpHI7dX2UKGgGaAloD0MIrmGGxpNZb0CUhpRSlGgVTSIBaBZHQI03ipNsWO91fZQoaAZoCWgPQwjYKsHi8JNwQJSGlFKUaBVNIQFoFkdAjTgqLCN0eXV9lChoBmgJaA9DCEsDP6phXHBAlIaUUpRoFU0vAWgWR0CNOOFcIJJHdX2UKGgGaAloD0MI8RDGT+PWbkCUhpRSlGgVTScBaBZHQI07Mmnfl6t1fZQoaAZoCWgPQwiLijidJAdwQJSGlFKUaBVNDgFoFkdAjTzfjCHh0nV9lChoBmgJaA9DCBMro5HPM29AlIaUUpRoFU1BAWgWR0CNPVpBX0XhdX2UKGgGaAloD0MIBVPNrCVyb0CUhpRSlGgVTR4BaBZHQI0+zwDvE0l1fZQoaAZoCWgPQwjhDP5+8cVxQJSGlFKUaBVNFQFoFkdAjUDkFwDNhXV9lChoBmgJaA9DCNOjqZ7MgG5AlIaUUpRoFU1dAWgWR0CNR7U6PsAvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:813d1405e34671537f84f23b9cc67608e7300d2e74c17d394b38cf96b524bdcb
3
+ size 147420
ppo-LunarLander-v2-3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2-3/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b19dd2e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b19dd2ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b19dd2f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b19dd6040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6b19dd60d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6b19dd6160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b19dd61f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b19dd6280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6b19dd6310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b19dd63a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b19dd6430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b19dd64c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6b19dcd1e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673790264546508833,
52
+ "learning_rate": 0.001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBJk73fAIY+9b4LPi7tdL6WdhE9hq8YvQAAAAAAAAAAZrZSPD2zBjzSAaS8EK5evviWtDztI/M7AAAAAAAAAACaBsy8aTkTvPIriz3JR4G9V8bMvCG7lL4AAIA/AACAP43rrL1ca2S6/PeguSYXo7RGa0S7Rsu8OAAAAAAAAIA/momgur6WsT89H+W8bx6avqHfQbtyKri8AAAAAAAAAAAzif09CA+0Ph1boL0MJli+wlHOPNyhhL0AAAAAAAAAAGabRD1ccxS8UEARvR0kcjx6ToQ91gNLvQAAgD8AAIA/4GsePgcXNz8rRea9G5aKvtR9vT0rNji9AAAAAAAAAAAz2PG8nIHFPrIcmr0Q3Hi+601CvTj2SjwAAAAAAAAAAABy/DzpWQI9dQ/zvOFUbL7w1YI8UokpuwAAAAAAAAAAAKQyPDgYnLuLmJK8Mk8MPdcMCL3gfeg9AACAPwAAgD+zDeG9q0RBP5yhuD0ZYZC+WEkKvSscHj0AAAAAAAAAACajtL0UDpC6khr2NhJbFTJ01QY7nl0PtgAAAAAAAIA/MytkPA/kJT6wPuO9VqdrvmWAvbyzvwc7AAAAAAAAAADNxAm9T1gfvEZJO71HCVm8CViaPRkeoz4AAIA/AACAP5oWtLzUvOI90moSPpGOcb51qDc9lUZbPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBfuXJhycUCUhpRSlIwBbJRNKgGMAXSUR0CMsPXlKbrkdX2UKGgGaAloD0MIbw1slSA8c0CUhpRSlGgVTQ8BaBZHQIyx88/2TPl1fZQoaAZoCWgPQwhjR+NQv7dvQJSGlFKUaBVL/2gWR0CMs1acI7eVdX2UKGgGaAloD0MIIlSp2cMpcECUhpRSlGgVTUQBaBZHQIy0KLsKLKp1fZQoaAZoCWgPQwgM6IU7V+JwQJSGlFKUaBVNNAFoFkdAjLVL4vexfXV9lChoBmgJaA9DCO244XfTHnJAlIaUUpRoFU0XAWgWR0CMtVz/ZM+NdX2UKGgGaAloD0MI75HNVbNnckCUhpRSlGgVTRkBaBZHQIy1lGPPszF1fZQoaAZoCWgPQwgMdsO2xRBvQJSGlFKUaBVNIQFoFkdAjLZafzz3AXV9lChoBmgJaA9DCNi8qrNaknBAlIaUUpRoFU00AWgWR0CMt0oMKCxvdX2UKGgGaAloD0MILPUsCGXpcECUhpRSlGgVTRcBaBZHQIy5JYgaFVV1fZQoaAZoCWgPQwhVMCqpk1RwQJSGlFKUaBVNOgFoFkdAjLobsWweNnV9lChoBmgJaA9DCFExzt8EInFAlIaUUpRoFU0rAWgWR0CMuxqbBoEkdX2UKGgGaAloD0MIEaeTbPWQYkCUhpRSlGgVTegDaBZHQIy7+rn1WbR1fZQoaAZoCWgPQwhKQ41CEv1tQJSGlFKUaBVNCAFoFkdAjL8kzGgi/3V9lChoBmgJaA9DCJ0rSglB1nJAlIaUUpRoFU08AWgWR0CMvzlXiiqRdX2UKGgGaAloD0MID2CRX/9Qc0CUhpRSlGgVTQwBaBZHQIy/3ShJyyV1fZQoaAZoCWgPQwhENSVZB2JyQJSGlFKUaBVNAAFoFkdAjMHoOhCdBnV9lChoBmgJaA9DCKW8VkJ3+21AlIaUUpRoFU0XAWgWR0CMxBmh/RVqdX2UKGgGaAloD0MI6ZrJNxvhcUCUhpRSlGgVTQ4BaBZHQIzEm/etSyd1fZQoaAZoCWgPQwh7M2q+CnZyQJSGlFKUaBVNHQFoFkdAjMY74SHuZ3V9lChoBmgJaA9DCEhwI2WLxXFAlIaUUpRoFU0VAWgWR0CMxvKgZjx1dX2UKGgGaAloD0MIILJIE2/scUCUhpRSlGgVTRoBaBZHQIzHExmCiAV1fZQoaAZoCWgPQwjUCtP3GjJuQJSGlFKUaBVNEQFoFkdAjMdiGN70F3V9lChoBmgJaA9DCGzRArSt4G5AlIaUUpRoFU0pAWgWR0CMx9Bu4wyqdX2UKGgGaAloD0MIw6BMo8mycECUhpRSlGgVTQoBaBZHQIzJ9yLhrFh1fZQoaAZoCWgPQwg6I0p7Qx1xQJSGlFKUaBVNIQFoFkdAjMpnJT2nKnV9lChoBmgJaA9DCNQNFHin721AlIaUUpRoFU0JAWgWR0CMysQjD8+BdX2UKGgGaAloD0MI8PeL2ZKpcUCUhpRSlGgVTT0BaBZHQIzOWO0b9611fZQoaAZoCWgPQwio/dZO1EVwQJSGlFKUaBVNEQFoFkdAjM/EqUeMh3V9lChoBmgJaA9DCGluhbCa/25AlIaUUpRoFU0hAWgWR0CMz/vDP4VRdX2UKGgGaAloD0MIjdDP1OvtcUCUhpRSlGgVTSoBaBZHQIzQnmq5sj51fZQoaAZoCWgPQwhzafzCqxpvQJSGlFKUaBVNLAFoFkdAjNOtDD0lJHV9lChoBmgJaA9DCKmluRUC+XFAlIaUUpRoFU0JAWgWR0CM06wJw84hdX2UKGgGaAloD0MI2xSPi2prcUCUhpRSlGgVTSMBaBZHQIzVwTAWSEF1fZQoaAZoCWgPQwg+CAH5UjxyQJSGlFKUaBVNGwFoFkdAjNgzBRAKOXV9lChoBmgJaA9DCP1mYrqQg29AlIaUUpRoFU0zAWgWR0CM2KV5a/yodX2UKGgGaAloD0MIA9AoXbobcUCUhpRSlGgVTRsBaBZHQIzY2uq3mV91fZQoaAZoCWgPQwg7Hch6KkdzQJSGlFKUaBVNVQFoFkdAjNxJRGc4HXV9lChoBmgJaA9DCG2Oc5uwMXBAlIaUUpRoFU0cAWgWR0CM3NfKISDidX2UKGgGaAloD0MIxooaTEMIcUCUhpRSlGgVTTEBaBZHQIzdr1schkl1fZQoaAZoCWgPQwhoeR7cHStyQJSGlFKUaBVNOQFoFkdAjN8ipm29c3V9lChoBmgJaA9DCOhKBKr//mtAlIaUUpRoFU0aAWgWR0CM4X8TBZZCdX2UKGgGaAloD0MIAB5RoXp3ckCUhpRSlGgVTSIBaBZHQIzjotWdVed1fZQoaAZoCWgPQwgqb0c4LcxLQJSGlFKUaBVL6WgWR0CM4/4SHuZ1dX2UKGgGaAloD0MIyjUFMnv/cECUhpRSlGgVTRsBaBZHQIzkIF3Y+St1fZQoaAZoCWgPQwjfisQEdX9wQJSGlFKUaBVNOgFoFkdAjOVfm9xp+XV9lChoBmgJaA9DCGTmApeHVXJAlIaUUpRoFU0HAWgWR0CM5ci8nNPhdX2UKGgGaAloD0MIDM7g75eFcUCUhpRSlGgVTf0CaBZHQIznj2alUId1fZQoaAZoCWgPQwg4ZW6+0SJyQJSGlFKUaBVNJgJoFkdAjOnwBo24u3V9lChoBmgJaA9DCOv/HOZLN3FAlIaUUpRoFU0qAWgWR0CM6gEytV7ydX2UKGgGaAloD0MIMVuyKsIYcUCUhpRSlGgVTQQBaBZHQIzqWcWj4591fZQoaAZoCWgPQwjItDaNbRpxQJSGlFKUaBVNHAFoFkdAjQNmp++dsnV9lChoBmgJaA9DCIQtdvvshnFAlIaUUpRoFU1MAWgWR0CNBp2q1gIAdX2UKGgGaAloD0MIcF8Hztn7cECUhpRSlGgVTRABaBZHQI0HA8W9DhN1fZQoaAZoCWgPQwjO4zCYv4BxQJSGlFKUaBVNJgFoFkdAjQcRri2lVXV9lChoBmgJaA9DCEchyazez3JAlIaUUpRoFU1RAWgWR0CNDRqwhW5pdX2UKGgGaAloD0MIO3E5XoGycUCUhpRSlGgVTRkBaBZHQI0NuumrKeV1fZQoaAZoCWgPQwhWEW4yKgByQJSGlFKUaBVNHAFoFkdAjQ5TdtVJc3V9lChoBmgJaA9DCBvV6UBWBXBAlIaUUpRoFU0kAWgWR0CNDwZof0VadX2UKGgGaAloD0MIByY3imztcECUhpRSlGgVTU4BaBZHQI0PWruIAOt1fZQoaAZoCWgPQwgxthDkoKVuQJSGlFKUaBVNHgFoFkdAjQ/89W6shnV9lChoBmgJaA9DCIm2Y+pulnBAlIaUUpRoFU0ZAWgWR0CNECJdB0IUdX2UKGgGaAloD0MIZqAy/j1jcUCUhpRSlGgVTakBaBZHQI0Qm+49X911fZQoaAZoCWgPQwgot+17FMpwQJSGlFKUaBVNGwFoFkdAjRH0OEug6HV9lChoBmgJaA9DCOI9B5ajqnBAlIaUUpRoFU0QAWgWR0CNFRi8WbgCdX2UKGgGaAloD0MIpoEf1TAxcUCUhpRSlGgVTSwBaBZHQI0WBEpiI+J1fZQoaAZoCWgPQwjFjVvMzzpvQJSGlFKUaBVNMwFoFkdAjRYTOxB3R3V9lChoBmgJaA9DCAZGXtYE2XJAlIaUUpRoFU08AWgWR0CNFokDZDiPdX2UKGgGaAloD0MIahMn9/vDcUCUhpRSlGgVTSEBaBZHQI0ZImPYFq11fZQoaAZoCWgPQwjUu3g/LnRyQJSGlFKUaBVNMAFoFkdAjRpo+nqFAXV9lChoBmgJaA9DCL8NMV6zuHBAlIaUUpRoFU0zAWgWR0CNGqLhJiAldX2UKGgGaAloD0MIK/htiPFDbUCUhpRSlGgVTRoBaBZHQI0f0yad+Xt1fZQoaAZoCWgPQwjsMCb9/a9wQJSGlFKUaBVNGgFoFkdAjSHcnuy/sXV9lChoBmgJaA9DCCTvHMoQ5nFAlIaUUpRoFU1IAWgWR0CNIkao/A0sdX2UKGgGaAloD0MILdLEO4CBckCUhpRSlGgVTUUBaBZHQI0iq/0ulGh1fZQoaAZoCWgPQwjIsfUM4VdxQJSGlFKUaBVNMwFoFkdAjSMMZpBX0XV9lChoBmgJaA9DCGKh1jTvqm5AlIaUUpRoFU0qAWgWR0CNI0NtIkJKdX2UKGgGaAloD0MIWBr4UY00bkCUhpRSlGgVTUMBaBZHQI0jxlJ6IFh1fZQoaAZoCWgPQwg66ui4GjtOQJSGlFKUaBVL1WgWR0CNI+JC0F8pdX2UKGgGaAloD0MIwXPv4VIScECUhpRSlGgVTRoBaBZHQI0kNQVKwpx1fZQoaAZoCWgPQwhdb5upEOdtQJSGlFKUaBVNCQFoFkdAjSYHlnyup3V9lChoBmgJaA9DCDIFa5xNcXFAlIaUUpRoFU1UAWgWR0CNJi9nK4hEdX2UKGgGaAloD0MIQpWaPdBSckCUhpRSlGgVTSsBaBZHQI0oweRxLkF1fZQoaAZoCWgPQwhGJuDXyEFwQJSGlFKUaBVNLwFoFkdAjSl6rvLHMnV9lChoBmgJaA9DCOAO1CkPk3FAlIaUUpRoFU0mAWgWR0CNK9zmwJPZdX2UKGgGaAloD0MIQe+NIQBgbUCUhpRSlGgVTSUBaBZHQI0tE3Q2MsJ1fZQoaAZoCWgPQwgVONkGrohwQJSGlFKUaBVNJQFoFkdAjTWH9WIXTHV9lChoBmgJaA9DCC7lfLH3PWxAlIaUUpRoFU0mAWgWR0CNNhrO7g89dX2UKGgGaAloD0MI6gd1kQKOckCUhpRSlGgVTUYBaBZHQI02TBInSfF1fZQoaAZoCWgPQwgRUyKJnm5xQJSGlFKUaBVNIAFoFkdAjTZ4/Vy3kXV9lChoBmgJaA9DCIR+pl73q3BAlIaUUpRoFU0vAWgWR0CNN1AzpHI7dX2UKGgGaAloD0MIrmGGxpNZb0CUhpRSlGgVTSIBaBZHQI03ipNsWO91fZQoaAZoCWgPQwjYKsHi8JNwQJSGlFKUaBVNIQFoFkdAjTgqLCN0eXV9lChoBmgJaA9DCEsDP6phXHBAlIaUUpRoFU0vAWgWR0CNOOFcIJJHdX2UKGgGaAloD0MI8RDGT+PWbkCUhpRSlGgVTScBaBZHQI07Mmnfl6t1fZQoaAZoCWgPQwiLijidJAdwQJSGlFKUaBVNDgFoFkdAjTzfjCHh0nV9lChoBmgJaA9DCBMro5HPM29AlIaUUpRoFU1BAWgWR0CNPVpBX0XhdX2UKGgGaAloD0MIBVPNrCVyb0CUhpRSlGgVTR4BaBZHQI0+zwDvE0l1fZQoaAZoCWgPQwjhDP5+8cVxQJSGlFKUaBVNFQFoFkdAjUDkFwDNhXV9lChoBmgJaA9DCNOjqZ7MgG5AlIaUUpRoFU1dAWgWR0CNR7U6PsAvdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 1024,
81
+ "gamma": 0.9995,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2-3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d440ef51fff5f2e692026e97158b2b00ed913934c768899fcc19b1f927ae7254
3
+ size 87929
ppo-LunarLander-v2-3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:480a4bef12d3cd73ca1ae059c92b928e583eb4f7213534a63b49ac0f598ee1eb
3
+ size 43393
ppo-LunarLander-v2-3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 273.275076141508, "std_reward": 24.01212558622559, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-16T09:10:58.942466"}
 
1
+ {"mean_reward": 274.66613711935037, "std_reward": 19.292853756166995, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T14:04:18.483700"}