NikitaBaramiia commited on
Commit
92544c2
·
1 Parent(s): ff25352

Upload PPO LunarLander-v2 trained agent (new version)

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 264.77 +/- 21.94
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 273.28 +/- 24.01
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85361a48c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85361a4950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85361a49e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85361a4a70>", "_build": "<function ActorCriticPolicy._build at 0x7f85361a4b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f85361a4b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85361a4c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85361a4cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85361a4d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85361a4dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85361a4e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85361f56c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665874815201364340, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbCgz3hZIO6uII6tnN6VLEVcEc7xZlnNQAAgD8AAIA/ZjkePQpdbrve9Kw8vO7mPD74vzzV9sG9AACAPwAAgD8z3oE8qfpcvBZpQDyQY5Q8fvy/PZ2NcL0AAIA/AACAP4Cjsj1cu2W6wyhYtdV9hzLjJmk5Nn2BNAAAgD8AAIA/RocSPsmoOz4aBTm+FCg2vhuiT703yJ+8AAAAAAAAAABmJp+8Pp2oP9+EJb4NyuC+xff/vOqqNr0AAAAAAAAAABoBHz2Pdg+66zqEteuuwa/gOW+6fQa9NAAAgD8AAIA/mpUovl8+rj+V6b6+FVfmvtBrzr2Eph2+AAAAAAAAAAAAHW+9QxGtP6LuAr/UHrO+AJOpvD2aDr4AAAAAAAAAADOfjb34SqE+psLWPgTYfb7Fq7Y9YyOhPQAAAAAAAAAAWkP/PQo1ALuNuJm9CugBPOLFiD3AhO+9AACAPwAAgD/Nfjy9UZBFP5MBKr0gfsO+Dmk9vaLkET0AAAAAAAAAAM07uLx75qe6jcVhNVwBlTAvEmS6/u2WtAAAgD8AAIA/mskCu6QATbnWhP88NAsjvlhQSDz+tEK9AAAAAAAAAABmY8k8QxO0P/ZlgT6yrgG+4uQZPA3LyT0AAAAAAAAAAJpx0Tt0zrM/w7olP0CwjL4hd/K7KykWvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP6n26Xgdb0CUhpRSlIwBbJRNDwGMAXSUR0CwOlzB68g7dX2UKGgGaAloD0MICoDxDBq8bkCUhpRSlGgVTQYBaBZHQLA6cb+Lm6p1fZQoaAZoCWgPQwgiT5KumYpHQJSGlFKUaBVLvWgWR0CwOt2LpA2RdX2UKGgGaAloD0MISBXFqywBckCUhpRSlGgVTRMBaBZHQLA67Za3Zwp1fZQoaAZoCWgPQwjJ5T+k30JwQJSGlFKUaBVNHAFoFkdAsDsYarFOwnV9lChoBmgJaA9DCLYQ5KCEh29AlIaUUpRoFUv4aBZHQLA7LFsYVIt1fZQoaAZoCWgPQwhblNkgEz1yQJSGlFKUaBVNIwFoFkdAsDtd9BrvcHV9lChoBmgJaA9DCD/EBgunRXJAlIaUUpRoFU0oAWgWR0CwO5ID9wWFdX2UKGgGaAloD0MIT6+UZYi4ckCUhpRSlGgVTQYBaBZHQLA7mfRu0kZ1fZQoaAZoCWgPQwiLqIk+X3xxQJSGlFKUaBVNBwFoFkdAsDvt2ki2UnV9lChoBmgJaA9DCJKzsKcdKERAlIaUUpRoFUvPaBZHQLA7+RpDeCV1fZQoaAZoCWgPQwgFFytqsEZwQJSGlFKUaBVNRwFoFkdAsDwjWVeKK3V9lChoBmgJaA9DCITYmUIng3FAlIaUUpRoFU03AWgWR0CwPC7n9vS/dX2UKGgGaAloD0MIpBe1+9XZbECUhpRSlGgVTS4BaBZHQLA8QXtjTa11fZQoaAZoCWgPQwhDOGbZ03lwQJSGlFKUaBVNHwFoFkdAsDyXVoYek3V9lChoBmgJaA9DCI5cN6V8tHFAlIaUUpRoFU0VAWgWR0CwPJlCw8nvdX2UKGgGaAloD0MIIm5OJYP8ckCUhpRSlGgVS/xoFkdAsDzpRUFSsXV9lChoBmgJaA9DCDlGskeoI29AlIaUUpRoFUv9aBZHQLA9MPfsNUh1fZQoaAZoCWgPQwhDjxg9N2JwQJSGlFKUaBVNJwFoFkdAsD03jCHh0nV9lChoBmgJaA9DCNl78UX7JXBAlIaUUpRoFU0VAWgWR0CwPU8gyM1kdX2UKGgGaAloD0MIDLCPTl3WbkCUhpRSlGgVS/NoFkdAsD2JHFxXGXV9lChoBmgJaA9DCENznUZa33JAlIaUUpRoFU0SAWgWR0CwPZThgmZ3dX2UKGgGaAloD0MIRRDn4YRtcUCUhpRSlGgVTQUBaBZHQLA9uh1DBuZ1fZQoaAZoCWgPQwiQhegQOMo/QJSGlFKUaBVL0GgWR0CwPfl1nuiOdX2UKGgGaAloD0MIW3o01ZMHb0CUhpRSlGgVTQsBaBZHQLA+HeYUnG91fZQoaAZoCWgPQwh6xyk6UtRwQJSGlFKUaBVL82gWR0CwPjETg2qDdX2UKGgGaAloD0MIV+vE5ThGcUCUhpRSlGgVTRMBaBZHQLA+OyR0U491fZQoaAZoCWgPQwhMT1jigQBwQJSGlFKUaBVNAAFoFkdAsD4/TTfBN3V9lChoBmgJaA9DCPGeA8sRRm5AlIaUUpRoFU2NA2gWR0CwPqi+10DEdX2UKGgGaAloD0MIOBH92joac0CUhpRSlGgVTQUBaBZHQLA+udNnGsF1fZQoaAZoCWgPQwjyejApPi9TQJSGlFKUaBVL2GgWR0CwPve3lS0jdX2UKGgGaAloD0MICKuxhHWLcUCUhpRSlGgVTTABaBZHQLA/FGW2PT51fZQoaAZoCWgPQwjPL0rQH4dwQJSGlFKUaBVL/WgWR0CwP2EaZQYUdX2UKGgGaAloD0MIizbHuU2VcECUhpRSlGgVTT4BaBZHQLA/jI5YHPh1fZQoaAZoCWgPQwjrNqj91pNTQJSGlFKUaBVLq2gWR0CwP6MlXzUadX2UKGgGaAloD0MIGttrQa9vcUCUhpRSlGgVTS8BaBZHQLA/srZrYXh1fZQoaAZoCWgPQwhuisdFNV9uQJSGlFKUaBVNDQFoFkdAsD/MYk3S8nV9lChoBmgJaA9DCB8PfXdrXnFAlIaUUpRoFU0SAWgWR0CwP8ydWhh6dX2UKGgGaAloD0MIzQUujzWybkCUhpRSlGgVTREBaBZHQLA/90pVjqh1fZQoaAZoCWgPQwgBF2TL8s9HQJSGlFKUaBVL2GgWR0CwP/xr30wrdX2UKGgGaAloD0MI7PtwkBBfVUCUhpRSlGgVTegDaBZHQLBAEMNMGot1fZQoaAZoCWgPQwhQptHk4rFuQJSGlFKUaBVNAwFoFkdAsEAtwqAjIXV9lChoBmgJaA9DCMZpiCr8hHFAlIaUUpRoFU0lAWgWR0CwQ2JLVWjodX2UKGgGaAloD0MIucK7XMS6cUCUhpRSlGgVTSMBaBZHQLBDi3pfQa91fZQoaAZoCWgPQwjeV+VC5ZdwQJSGlFKUaBVL7WgWR0CwQ5tLDhtMdX2UKGgGaAloD0MIKZXwhF7Sb0CUhpRSlGgVTRQBaBZHQLBD7LmITGp1fZQoaAZoCWgPQwjAkqtY/DBwQJSGlFKUaBVNBQFoFkdAsEQKFoL5RHV9lChoBmgJaA9DCBVUVP3KQW9AlIaUUpRoFU0EAWgWR0CwRGjKgZjydX2UKGgGaAloD0MIKhvWVNZacECUhpRSlGgVS/NoFkdAsESDRG+bmXV9lChoBmgJaA9DCAx07Qso1XFAlIaUUpRoFU1PAWgWR0CwRMMzQ/ordX2UKGgGaAloD0MIYeKPog4Ec0CUhpRSlGgVTQoBaBZHQLBE4m4Ajpt1fZQoaAZoCWgPQwgPf03W6ClwQJSGlFKUaBVNIAFoFkdAsET52C/XXnV9lChoBmgJaA9DCNCAejNq+3BAlIaUUpRoFU0CAWgWR0CwRQEVvddndX2UKGgGaAloD0MIlbn5RnQRb0CUhpRSlGgVTRsBaBZHQLBFDC6pYLd1fZQoaAZoCWgPQwj6RQn6SxxyQJSGlFKUaBVNHwFoFkdAsEVJTm4iHXV9lChoBmgJaA9DCGxAhLhyOG9AlIaUUpRoFU0BAWgWR0CwRW6raM72dX2UKGgGaAloD0MIZw3eV6UHckCUhpRSlGgVTSwBaBZHQLBFgD/EOy51fZQoaAZoCWgPQwhuiVxwRppwQJSGlFKUaBVNbgFoFkdAsEWEht+CsnV9lChoBmgJaA9DCGglrfgGt21AlIaUUpRoFUvraBZHQLBFhlf7aZh1fZQoaAZoCWgPQwiJQsu6/zBwQJSGlFKUaBVNIwFoFkdAsEWQPRRdhXV9lChoBmgJaA9DCKGjVS0p+nBAlIaUUpRoFU0qAWgWR0CwRdzuOS4fdX2UKGgGaAloD0MIUAEwnkE8bUCUhpRSlGgVS/poFkdAsEXp4SpR43V9lChoBmgJaA9DCE7TZwccq3BAlIaUUpRoFUv6aBZHQLBGAX2M85l1fZQoaAZoCWgPQwjyJVRwuPBxQJSGlFKUaBVNDgFoFkdAsEaFPGhmG3V9lChoBmgJaA9DCPlp3Juf7HJAlIaUUpRoFU0lAWgWR0CwRte9SMtLdX2UKGgGaAloD0MIxF4oYPsEckCUhpRSlGgVS/ZoFkdAsEbkRf4REnV9lChoBmgJaA9DCB9LH7qgaXFAlIaUUpRoFU0OAWgWR0CwRua1TisGdX2UKGgGaAloD0MISfYINQOdcUCUhpRSlGgVS/xoFkdAsEb4IjW07nV9lChoBmgJaA9DCPQau0Q1C3NAlIaUUpRoFU0PAWgWR0CwRwSjDbaidX2UKGgGaAloD0MICwxZ3Wp7cECUhpRSlGgVTSEBaBZHQLBHTuejEeh1fZQoaAZoCWgPQwjgu80bJ3NxQJSGlFKUaBVNCgFoFkdAsEdZz90ihXV9lChoBmgJaA9DCBjt8UK6FXFAlIaUUpRoFUv4aBZHQLBHa1SwW311fZQoaAZoCWgPQwgM5US7SvdwQJSGlFKUaBVL+WgWR0CwR297WuoxdX2UKGgGaAloD0MIzCVV201vcUCUhpRSlGgVTQYBaBZHQLBHcubqhUR1fZQoaAZoCWgPQwgZda29TyluQJSGlFKUaBVNHQFoFkdAsEejkRzzVnV9lChoBmgJaA9DCMQ+ARQjKHJAlIaUUpRoFU0YAWgWR0CwR6mois4ldX2UKGgGaAloD0MIpZ9wditWckCUhpRSlGgVTQoBaBZHQLBH6pGnXNF1fZQoaAZoCWgPQwjE6o8wzDVxQJSGlFKUaBVNFwFoFkdAsEgcrJ8v3HV9lChoBmgJaA9DCB2u1R72AHBAlIaUUpRoFU05AWgWR0CwSDDVhCtzdX2UKGgGaAloD0MIhIQoX9AUckCUhpRSlGgVTSoBaBZHQLBIyrgOz6d1fZQoaAZoCWgPQwiCUx9IXmBsQJSGlFKUaBVNEgFoFkdAsEjy2VmjCnV9lChoBmgJaA9DCFwf1hs1Mm9AlIaUUpRoFU0JAWgWR0CwSP6fFrEcdX2UKGgGaAloD0MI7L5jeGxOcECUhpRSlGgVTRgBaBZHQLBI/t6X0Gx1fZQoaAZoCWgPQwgVqwZh7iBwQJSGlFKUaBVNHgFoFkdAsEkBA7gbZXV9lChoBmgJaA9DCFw5e2c09HFAlIaUUpRoFU0gAWgWR0CwSSGZ7XxwdX2UKGgGaAloD0MIdZDXg0k7Q0CUhpRSlGgVS8poFkdAsEknrv9cbHV9lChoBmgJaA9DCGMl5lnJWnJAlIaUUpRoFUvwaBZHQLBJMLP2PDJ1fZQoaAZoCWgPQwhwmGiQAnxvQJSGlFKUaBVL/mgWR0CwSURplBhQdX2UKGgGaAloD0MIhSf0+hOGb0CUhpRSlGgVTQsBaBZHQLBJRB2OhkB1fZQoaAZoCWgPQwjICRNGc1FxQJSGlFKUaBVNGgFoFkdAsEljMINVinV9lChoBmgJaA9DCOXxtPyAsHFAlIaUUpRoFU0VAWgWR0CwSW5amoBJdX2UKGgGaAloD0MIqIx/n3ERPkCUhpRSlGgVS8FoFkdAsEmMsI3R5XV9lChoBmgJaA9DCJaTUPoCRnFAlIaUUpRoFU0oAWgWR0CwScC7f51vdX2UKGgGaAloD0MIbatZZ7yTckCUhpRSlGgVTQ8BaBZHQLBJ3o371qZ1fZQoaAZoCWgPQwigVPt0vD5xQJSGlFKUaBVNLQFoFkdAsEpi4d6syXV9lChoBmgJaA9DCPThWYLM1nFAlIaUUpRoFUvsaBZHQLBKqoxpL291fZQoaAZoCWgPQwgJ3SVxVjJuQJSGlFKUaBVL+mgWR0CwSvUeZG8VdX2UKGgGaAloD0MIhq+vdWmZcUCUhpRSlGgVTQsBaBZHQLBK9VFQVKx1fZQoaAZoCWgPQwiga19Ar+NwQJSGlFKUaBVNEgFoFkdAsEr6PvKEFnV9lChoBmgJaA9DCKWCiqpfZnBAlIaUUpRoFU0rAWgWR0CwSw3Him2tdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69944ed170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69944ed200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69944ed290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69944ed320>", "_build": "<function ActorCriticPolicy._build at 0x7f69944ed3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f69944ed440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69944ed4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69944ed560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69944ed5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69944ed680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69944ed710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f69944c7120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665910600223060125, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMDCz4Vljk+7nhevsqGLr5kyOK8Su4RvQAAAAAAAAAAs+sJPlncbz/lJ1Q+6SDYvu36Aj6GX9m8AAAAAAAAAAAz5iK99pgrurterLFEkziqpD1/Ozua8TIAAIA/AACAP6aU2T3LzYc+97SmvgFffr45H3e97m0APQAAAAAAAAAAGjkBvde6SLtTShY8G2uTPAARZjxASH29AACAPwAAgD8AGmg9Mfx2Pim1Sr2ZRWG+zttYPAd0FL0AAAAAAAAAAK0Sl77IZCU/9Y12vYLivb780HW+MOcePQAAAAAAAAAATRhRPRsU7j4z7gw9a+CTvqTwgTxgsRK9AAAAAAAAAADN+yY918QmuzJ+aD3Ajzc9y0kuPGQPDb4AAIA/AACAP82GXD0YOcU+BpLaPQBQk75aInM9eKTWuwAAAAAAAAAAZjIfPaeeFT7+42++YGBWvj4Shr3YCWc9AAAAAAAAAADT8EI+bgS+PgOub76mLGG+SuZ2PbIULb0AAAAAAAAAAGZtL73h2Mm6+/z+PAvjJLxcSYy6yGP/vAAAgD8AAIA/GmduPc+6gj9QCYo9RR8Av9PTPD2YbXg8AAAAAAAAAAAaxRu9uwmHvIVcOT1uOiA8g2PnvRe9BT0AAIA/AACAPzMu0DxogMY9n6wPvghagL7d03y9XDnBvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbUxBc0CUhpRSlIwBbJRNDQGMAXSUR0CQ9TxAB1cMdX2UKGgGaAloD0MIN1SM83dWcUCUhpRSlGgVTUUBaBZHQJD1e4nWrfd1fZQoaAZoCWgPQwjvq3Kh8tVtQJSGlFKUaBVNEAFoFkdAkPXFS4vvjXV9lChoBmgJaA9DCMBcixYgzW5AlIaUUpRoFUvnaBZHQJD12qWC2+h1fZQoaAZoCWgPQwgxfhr35nRvQJSGlFKUaBVL+mgWR0CQ9yB7NSqEdX2UKGgGaAloD0MI/gsEAbLCcECUhpRSlGgVTQ8BaBZHQJD30Oc2BJ91fZQoaAZoCWgPQwijdOlfUjBwQJSGlFKUaBVNCAFoFkdAkPf53os7MnV9lChoBmgJaA9DCITzqWPVFHBAlIaUUpRoFUv8aBZHQJD4TeWOZLJ1fZQoaAZoCWgPQwhIGAYs+TdxQJSGlFKUaBVL+mgWR0CQ+hQyyleodX2UKGgGaAloD0MIsOWV621ScECUhpRSlGgVS+toFkdAkPqBJVbRnnV9lChoBmgJaA9DCL00RYBTwnJAlIaUUpRoFU0JAWgWR0CQ+ob+tKZldX2UKGgGaAloD0MIRQ2mYXgYb0CUhpRSlGgVS+loFkdAkPqkT+NtInV9lChoBmgJaA9DCD874Lqi4nBAlIaUUpRoFUv9aBZHQJD63GEPDpF1fZQoaAZoCWgPQwiQ3QVKimxyQJSGlFKUaBVL/WgWR0CQ+2be/Ho6dX2UKGgGaAloD0MI443MIz9McECUhpRSlGgVTQkBaBZHQJD7cOUdJat1fZQoaAZoCWgPQwi/tRMloc1vQJSGlFKUaBVNDQFoFkdAkPuXwG4ZuXV9lChoBmgJaA9DCNfdPNXhuXBAlIaUUpRoFUvzaBZHQJD7omTkhid1fZQoaAZoCWgPQwgHKA01CihwQJSGlFKUaBVNCAFoFkdAkPvdr0rbxnV9lChoBmgJaA9DCJYjZCAP83BAlIaUUpRoFUv2aBZHQJD8BvqC6H11fZQoaAZoCWgPQwimQjwSr1lsQJSGlFKUaBVL+GgWR0CQ/CY02tMgdX2UKGgGaAloD0MIriglBKtFckCUhpRSlGgVS+BoFkdAkP4fUONHY3V9lChoBmgJaA9DCNMwfESM/nBAlIaUUpRoFU0bAWgWR0CQ/mYigTRIdX2UKGgGaAloD0MISIld29sxckCUhpRSlGgVTRsBaBZHQJD/Vhx5s0p1fZQoaAZoCWgPQwj+R6ZDp/FGQJSGlFKUaBVL3mgWR0CRACtG/etTdX2UKGgGaAloD0MI8iiV8ESWckCUhpRSlGgVS+xoFkdAkQA1n7Hhj3V9lChoBmgJaA9DCBnHSPaI33FAlIaUUpRoFU1EAWgWR0CRAFz5GjKxdX2UKGgGaAloD0MICf8iaAxGcUCUhpRSlGgVS+hoFkdAkQDMb3oLX3V9lChoBmgJaA9DCNi5aTNON3NAlIaUUpRoFU0AAWgWR0CRASYKIBRydX2UKGgGaAloD0MINKDejBrKbUCUhpRSlGgVS/xoFkdAkQEmQwK0D3V9lChoBmgJaA9DCMb5m1CIkG5AlIaUUpRoFUvuaBZHQJEBruOS4e91fZQoaAZoCWgPQwjwvioXaidzQJSGlFKUaBVL7GgWR0CRAjsTWXkYdX2UKGgGaAloD0MIFD5bBwf5TUCUhpRSlGgVTQABaBZHQJECYniNsFd1fZQoaAZoCWgPQwjRQCybucxwQJSGlFKUaBVNEQFoFkdAkQJi+g13uHV9lChoBmgJaA9DCICAtWoXfHFAlIaUUpRoFU0BAWgWR0CRAo90ihWYdX2UKGgGaAloD0MI/TGtTSN4cUCUhpRSlGgVTRoBaBZHQJECiojv/ip1fZQoaAZoCWgPQwgYIqevZ8dyQJSGlFKUaBVNTQFoFkdAkQPPgNwzcnV9lChoBmgJaA9DCCvZsRGIN29AlIaUUpRoFU0DAWgWR0CRBLW0qpcYdX2UKGgGaAloD0MIqTKMu0GyckCUhpRSlGgVTTcBaBZHQJESyeVcD8t1fZQoaAZoCWgPQwhKsg5H1zlwQJSGlFKUaBVNGQFoFkdAkRLvgeii7HV9lChoBmgJaA9DCDs6rkb2gHFAlIaUUpRoFUv4aBZHQJES/tqpLmJ1fZQoaAZoCWgPQwhS0sPQ6h5wQJSGlFKUaBVNBgFoFkdAkRNBMewLVnV9lChoBmgJaA9DCK/S3XU2c3BAlIaUUpRoFUvwaBZHQJETlZZB9kV1fZQoaAZoCWgPQwgnofSFEKttQJSGlFKUaBVNCwFoFkdAkRQECzTnaHV9lChoBmgJaA9DCMl06PQ8jG1AlIaUUpRoFU0EAWgWR0CRFC8xbjcVdX2UKGgGaAloD0MI1sVtNMCecECUhpRSlGgVTSsBaBZHQJEUTrX18LN1fZQoaAZoCWgPQwiqKjQQy9FxQJSGlFKUaBVL4WgWR0CRFIHv+fh/dX2UKGgGaAloD0MI7nvUX+98cUCUhpRSlGgVTREBaBZHQJEU/+cYqG11fZQoaAZoCWgPQwj9wcBzr59wQJSGlFKUaBVL8WgWR0CRFRptrKvFdX2UKGgGaAloD0MIog3ABkRrb0CUhpRSlGgVS/9oFkdAkRUYXj2i+XV9lChoBmgJaA9DCMHHYMVpvHBAlIaUUpRoFUvyaBZHQJEVHKwIMSd1fZQoaAZoCWgPQwgjTFEuzYFxQJSGlFKUaBVNEAFoFkdAkRWRdY4hlnV9lChoBmgJaA9DCOxph7/mF3NAlIaUUpRoFUv4aBZHQJEWXMpw0fp1fZQoaAZoCWgPQwiNX3glCQ9yQJSGlFKUaBVL9WgWR0CRFyOfdyksdX2UKGgGaAloD0MIuOhkqXVicECUhpRSlGgVS/RoFkdAkRj+Lehwl3V9lChoBmgJaA9DCCxhbYwdPnFAlIaUUpRoFUv8aBZHQJEZHJ4jbBZ1fZQoaAZoCWgPQwjwwADCB4ttQJSGlFKUaBVNBgFoFkdAkRmkwBYFJXV9lChoBmgJaA9DCLa93ZLc7HFAlIaUUpRoFUvzaBZHQJEZq12JSBN1fZQoaAZoCWgPQwiuu3mqQ4htQJSGlFKUaBVNAwFoFkdAkRnSWRigCnV9lChoBmgJaA9DCAIMy5/vVW5AlIaUUpRoFUvsaBZHQJEZ5UhmoR91fZQoaAZoCWgPQwgFa5xNB8lwQJSGlFKUaBVL82gWR0CRGjnrY5DJdX2UKGgGaAloD0MIPQ/uzto9cECUhpRSlGgVS/xoFkdAkRqQyVObiXV9lChoBmgJaA9DCLag98ZQ7XJAlIaUUpRoFU0NAWgWR0CRGzY7aIvbdX2UKGgGaAloD0MI5L9AEKC4bkCUhpRSlGgVS/poFkdAkRtXGS6lL3V9lChoBmgJaA9DCIdu9gdKwW5AlIaUUpRoFU0JAWgWR0CRG6DVH4GmdX2UKGgGaAloD0MIwY7/AoGxckCUhpRSlGgVS+5oFkdAkRuhciW3SnV9lChoBmgJaA9DCMjqVs+J6nJAlIaUUpRoFU0QAWgWR0CRG+kTpPhydX2UKGgGaAloD0MIxQH0+74HcECUhpRSlGgVTSgBaBZHQJEcbMibDuV1fZQoaAZoCWgPQwitwfuq3IVyQJSGlFKUaBVNIgFoFkdAkR3IiLVFyHV9lChoBmgJaA9DCBLb3QP0u25AlIaUUpRoFU0dAWgWR0CRHqM5wOvudX2UKGgGaAloD0MIsDvdeWKdcECUhpRSlGgVS/9oFkdAkR++qNp/PXV9lChoBmgJaA9DCAO2gxE7InNAlIaUUpRoFUvuaBZHQJEf2JsO5J91fZQoaAZoCWgPQwjo+GhxRmRtQJSGlFKUaBVL9WgWR0CRIBNDc/MXdX2UKGgGaAloD0MIQUmBBXBHckCUhpRSlGgVS/BoFkdAkSAUMTewcHV9lChoBmgJaA9DCEAv3Lkw3HFAlIaUUpRoFU0UAWgWR0CRIHhBZ6lddX2UKGgGaAloD0MIoSx8fW1ZcECUhpRSlGgVS/ZoFkdAkSCn9ehPCXV9lChoBmgJaA9DCLVtGAVBsHFAlIaUUpRoFUvvaBZHQJEg0cNpdrx1fZQoaAZoCWgPQwguGjIepfVvQJSGlFKUaBVL5GgWR0CRIUHG0eEJdX2UKGgGaAloD0MIfPKwUKsHcUCUhpRSlGgVS/1oFkdAkSG96PbO/3V9lChoBmgJaA9DCKzj+KGSdHFAlIaUUpRoFU01AWgWR0CRIdwz+FURdX2UKGgGaAloD0MIfGMIAE7uckCUhpRSlGgVS+xoFkdAkSH8U/OdG3V9lChoBmgJaA9DCLmJWpobQ3FAlIaUUpRoFU0GAWgWR0CRIk/HHWBjdX2UKGgGaAloD0MI14o2x7m1cUCUhpRSlGgVTSoBaBZHQJEjIy/KyOd1fZQoaAZoCWgPQwjPukbLAbVxQJSGlFKUaBVNHQFoFkdAkSOs+u/1x3V9lChoBmgJaA9DCJWdflAXRXJAlIaUUpRoFUvuaBZHQJEj8A2hqTN1fZQoaAZoCWgPQwg25+CZ0BBxQJSGlFKUaBVL6mgWR0CRJIVRk3CLdX2UKGgGaAloD0MIA5SGGkVrcUCUhpRSlGgVS/xoFkdAkSX//rB0p3V9lChoBmgJaA9DCMcS1sZYz3BAlIaUUpRoFU0LAWgWR0CRJodvbXYldX2UKGgGaAloD0MIppcYyzTxcECUhpRSlGgVTQwBaBZHQJEmyXnhbW51fZQoaAZoCWgPQwjM7PMYpRlxQJSGlFKUaBVNAwFoFkdAkSbuqzZ6EHV9lChoBmgJaA9DCIKPwYoT/XBAlIaUUpRoFUv3aBZHQJEm+/k/8l51fZQoaAZoCWgPQwhtVn2u9l1zQJSGlFKUaBVNBwFoFkdAkSc4lyBClnV9lChoBmgJaA9DCMjQsYPK83JAlIaUUpRoFU0jAWgWR0CRJ2HmRvFWdX2UKGgGaAloD0MIbXAi+vVgckCUhpRSlGgVS/5oFkdAkSg//JeVs3V9lChoBmgJaA9DCHNIaqHk929AlIaUUpRoFUv8aBZHQJEoW2uxKQJ1fZQoaAZoCWgPQwiKyLCK91VwQJSGlFKUaBVNBwFoFkdAkShgr+YMOXV9lChoBmgJaA9DCDBntiu0Z3BAlIaUUpRoFU0qAWgWR0CRKLiuMdcTdX2UKGgGaAloD0MIMQqCxzcAcUCUhpRSlGgVTRkBaBZHQJEpXfJmukl1fZQoaAZoCWgPQwj6Jk2DooJwQJSGlFKUaBVNFAFoFkdAkSorm6oVEnV9lChoBmgJaA9DCETdByA1c3BAlIaUUpRoFU0PAWgWR0CRKuDfm9xqdX2UKGgGaAloD0MIOxixT4AgcUCUhpRSlGgVTRwBaBZHQJEq8eFL39J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8fb2ac6d758727910c66d4175dd97ce46d10782ef5d3592e21814587c8cfad59
3
- size 147118
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3062a58c22785aa1aba897dc6021f1eb4b9e0cc825a553d8de6d06839ef9881b
3
+ size 147092
ppo-LunarLander-v2-2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85361a48c0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85361a4950>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85361a49e0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85361a4a70>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f85361a4b00>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f85361a4b90>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85361a4c20>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f85361a4cb0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85361a4d40>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85361a4dd0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85361a4e60>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f85361f56c0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1665874815201364340,
51
  "learning_rate": 0.001,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,11 +56,11 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbCgz3hZIO6uII6tnN6VLEVcEc7xZlnNQAAgD8AAIA/ZjkePQpdbrve9Kw8vO7mPD74vzzV9sG9AACAPwAAgD8z3oE8qfpcvBZpQDyQY5Q8fvy/PZ2NcL0AAIA/AACAP4Cjsj1cu2W6wyhYtdV9hzLjJmk5Nn2BNAAAgD8AAIA/RocSPsmoOz4aBTm+FCg2vhuiT703yJ+8AAAAAAAAAABmJp+8Pp2oP9+EJb4NyuC+xff/vOqqNr0AAAAAAAAAABoBHz2Pdg+66zqEteuuwa/gOW+6fQa9NAAAgD8AAIA/mpUovl8+rj+V6b6+FVfmvtBrzr2Eph2+AAAAAAAAAAAAHW+9QxGtP6LuAr/UHrO+AJOpvD2aDr4AAAAAAAAAADOfjb34SqE+psLWPgTYfb7Fq7Y9YyOhPQAAAAAAAAAAWkP/PQo1ALuNuJm9CugBPOLFiD3AhO+9AACAPwAAgD/Nfjy9UZBFP5MBKr0gfsO+Dmk9vaLkET0AAAAAAAAAAM07uLx75qe6jcVhNVwBlTAvEmS6/u2WtAAAgD8AAIA/mskCu6QATbnWhP88NAsjvlhQSDz+tEK9AAAAAAAAAABmY8k8QxO0P/ZlgT6yrgG+4uQZPA3LyT0AAAAAAAAAAJpx0Tt0zrM/w7olP0CwjL4hd/K7KykWvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP6n26Xgdb0CUhpRSlIwBbJRNDwGMAXSUR0CwOlzB68g7dX2UKGgGaAloD0MICoDxDBq8bkCUhpRSlGgVTQYBaBZHQLA6cb+Lm6p1fZQoaAZoCWgPQwgiT5KumYpHQJSGlFKUaBVLvWgWR0CwOt2LpA2RdX2UKGgGaAloD0MISBXFqywBckCUhpRSlGgVTRMBaBZHQLA67Za3Zwp1fZQoaAZoCWgPQwjJ5T+k30JwQJSGlFKUaBVNHAFoFkdAsDsYarFOwnV9lChoBmgJaA9DCLYQ5KCEh29AlIaUUpRoFUv4aBZHQLA7LFsYVIt1fZQoaAZoCWgPQwhblNkgEz1yQJSGlFKUaBVNIwFoFkdAsDtd9BrvcHV9lChoBmgJaA9DCD/EBgunRXJAlIaUUpRoFU0oAWgWR0CwO5ID9wWFdX2UKGgGaAloD0MIT6+UZYi4ckCUhpRSlGgVTQYBaBZHQLA7mfRu0kZ1fZQoaAZoCWgPQwiLqIk+X3xxQJSGlFKUaBVNBwFoFkdAsDvt2ki2UnV9lChoBmgJaA9DCJKzsKcdKERAlIaUUpRoFUvPaBZHQLA7+RpDeCV1fZQoaAZoCWgPQwgFFytqsEZwQJSGlFKUaBVNRwFoFkdAsDwjWVeKK3V9lChoBmgJaA9DCITYmUIng3FAlIaUUpRoFU03AWgWR0CwPC7n9vS/dX2UKGgGaAloD0MIpBe1+9XZbECUhpRSlGgVTS4BaBZHQLA8QXtjTa11fZQoaAZoCWgPQwhDOGbZ03lwQJSGlFKUaBVNHwFoFkdAsDyXVoYek3V9lChoBmgJaA9DCI5cN6V8tHFAlIaUUpRoFU0VAWgWR0CwPJlCw8nvdX2UKGgGaAloD0MIIm5OJYP8ckCUhpRSlGgVS/xoFkdAsDzpRUFSsXV9lChoBmgJaA9DCDlGskeoI29AlIaUUpRoFUv9aBZHQLA9MPfsNUh1fZQoaAZoCWgPQwhDjxg9N2JwQJSGlFKUaBVNJwFoFkdAsD03jCHh0nV9lChoBmgJaA9DCNl78UX7JXBAlIaUUpRoFU0VAWgWR0CwPU8gyM1kdX2UKGgGaAloD0MIDLCPTl3WbkCUhpRSlGgVS/NoFkdAsD2JHFxXGXV9lChoBmgJaA9DCENznUZa33JAlIaUUpRoFU0SAWgWR0CwPZThgmZ3dX2UKGgGaAloD0MIRRDn4YRtcUCUhpRSlGgVTQUBaBZHQLA9uh1DBuZ1fZQoaAZoCWgPQwiQhegQOMo/QJSGlFKUaBVL0GgWR0CwPfl1nuiOdX2UKGgGaAloD0MIW3o01ZMHb0CUhpRSlGgVTQsBaBZHQLA+HeYUnG91fZQoaAZoCWgPQwh6xyk6UtRwQJSGlFKUaBVL82gWR0CwPjETg2qDdX2UKGgGaAloD0MIV+vE5ThGcUCUhpRSlGgVTRMBaBZHQLA+OyR0U491fZQoaAZoCWgPQwhMT1jigQBwQJSGlFKUaBVNAAFoFkdAsD4/TTfBN3V9lChoBmgJaA9DCPGeA8sRRm5AlIaUUpRoFU2NA2gWR0CwPqi+10DEdX2UKGgGaAloD0MIOBH92joac0CUhpRSlGgVTQUBaBZHQLA+udNnGsF1fZQoaAZoCWgPQwjyejApPi9TQJSGlFKUaBVL2GgWR0CwPve3lS0jdX2UKGgGaAloD0MICKuxhHWLcUCUhpRSlGgVTTABaBZHQLA/FGW2PT51fZQoaAZoCWgPQwjPL0rQH4dwQJSGlFKUaBVL/WgWR0CwP2EaZQYUdX2UKGgGaAloD0MIizbHuU2VcECUhpRSlGgVTT4BaBZHQLA/jI5YHPh1fZQoaAZoCWgPQwjrNqj91pNTQJSGlFKUaBVLq2gWR0CwP6MlXzUadX2UKGgGaAloD0MIGttrQa9vcUCUhpRSlGgVTS8BaBZHQLA/srZrYXh1fZQoaAZoCWgPQwhuisdFNV9uQJSGlFKUaBVNDQFoFkdAsD/MYk3S8nV9lChoBmgJaA9DCB8PfXdrXnFAlIaUUpRoFU0SAWgWR0CwP8ydWhh6dX2UKGgGaAloD0MIzQUujzWybkCUhpRSlGgVTREBaBZHQLA/90pVjqh1fZQoaAZoCWgPQwgBF2TL8s9HQJSGlFKUaBVL2GgWR0CwP/xr30wrdX2UKGgGaAloD0MI7PtwkBBfVUCUhpRSlGgVTegDaBZHQLBAEMNMGot1fZQoaAZoCWgPQwhQptHk4rFuQJSGlFKUaBVNAwFoFkdAsEAtwqAjIXV9lChoBmgJaA9DCMZpiCr8hHFAlIaUUpRoFU0lAWgWR0CwQ2JLVWjodX2UKGgGaAloD0MIucK7XMS6cUCUhpRSlGgVTSMBaBZHQLBDi3pfQa91fZQoaAZoCWgPQwjeV+VC5ZdwQJSGlFKUaBVL7WgWR0CwQ5tLDhtMdX2UKGgGaAloD0MIKZXwhF7Sb0CUhpRSlGgVTRQBaBZHQLBD7LmITGp1fZQoaAZoCWgPQwjAkqtY/DBwQJSGlFKUaBVNBQFoFkdAsEQKFoL5RHV9lChoBmgJaA9DCBVUVP3KQW9AlIaUUpRoFU0EAWgWR0CwRGjKgZjydX2UKGgGaAloD0MIKhvWVNZacECUhpRSlGgVS/NoFkdAsESDRG+bmXV9lChoBmgJaA9DCAx07Qso1XFAlIaUUpRoFU1PAWgWR0CwRMMzQ/ordX2UKGgGaAloD0MIYeKPog4Ec0CUhpRSlGgVTQoBaBZHQLBE4m4Ajpt1fZQoaAZoCWgPQwgPf03W6ClwQJSGlFKUaBVNIAFoFkdAsET52C/XXnV9lChoBmgJaA9DCNCAejNq+3BAlIaUUpRoFU0CAWgWR0CwRQEVvddndX2UKGgGaAloD0MIlbn5RnQRb0CUhpRSlGgVTRsBaBZHQLBFDC6pYLd1fZQoaAZoCWgPQwj6RQn6SxxyQJSGlFKUaBVNHwFoFkdAsEVJTm4iHXV9lChoBmgJaA9DCGxAhLhyOG9AlIaUUpRoFU0BAWgWR0CwRW6raM72dX2UKGgGaAloD0MIZw3eV6UHckCUhpRSlGgVTSwBaBZHQLBFgD/EOy51fZQoaAZoCWgPQwhuiVxwRppwQJSGlFKUaBVNbgFoFkdAsEWEht+CsnV9lChoBmgJaA9DCGglrfgGt21AlIaUUpRoFUvraBZHQLBFhlf7aZh1fZQoaAZoCWgPQwiJQsu6/zBwQJSGlFKUaBVNIwFoFkdAsEWQPRRdhXV9lChoBmgJaA9DCKGjVS0p+nBAlIaUUpRoFU0qAWgWR0CwRdzuOS4fdX2UKGgGaAloD0MIUAEwnkE8bUCUhpRSlGgVS/poFkdAsEXp4SpR43V9lChoBmgJaA9DCE7TZwccq3BAlIaUUpRoFUv6aBZHQLBGAX2M85l1fZQoaAZoCWgPQwjyJVRwuPBxQJSGlFKUaBVNDgFoFkdAsEaFPGhmG3V9lChoBmgJaA9DCPlp3Juf7HJAlIaUUpRoFU0lAWgWR0CwRte9SMtLdX2UKGgGaAloD0MIxF4oYPsEckCUhpRSlGgVS/ZoFkdAsEbkRf4REnV9lChoBmgJaA9DCB9LH7qgaXFAlIaUUpRoFU0OAWgWR0CwRua1TisGdX2UKGgGaAloD0MISfYINQOdcUCUhpRSlGgVS/xoFkdAsEb4IjW07nV9lChoBmgJaA9DCPQau0Q1C3NAlIaUUpRoFU0PAWgWR0CwRwSjDbaidX2UKGgGaAloD0MICwxZ3Wp7cECUhpRSlGgVTSEBaBZHQLBHTuejEeh1fZQoaAZoCWgPQwjgu80bJ3NxQJSGlFKUaBVNCgFoFkdAsEdZz90ihXV9lChoBmgJaA9DCBjt8UK6FXFAlIaUUpRoFUv4aBZHQLBHa1SwW311fZQoaAZoCWgPQwgM5US7SvdwQJSGlFKUaBVL+WgWR0CwR297WuoxdX2UKGgGaAloD0MIzCVV201vcUCUhpRSlGgVTQYBaBZHQLBHcubqhUR1fZQoaAZoCWgPQwgZda29TyluQJSGlFKUaBVNHQFoFkdAsEejkRzzVnV9lChoBmgJaA9DCMQ+ARQjKHJAlIaUUpRoFU0YAWgWR0CwR6mois4ldX2UKGgGaAloD0MIpZ9wditWckCUhpRSlGgVTQoBaBZHQLBH6pGnXNF1fZQoaAZoCWgPQwjE6o8wzDVxQJSGlFKUaBVNFwFoFkdAsEgcrJ8v3HV9lChoBmgJaA9DCB2u1R72AHBAlIaUUpRoFU05AWgWR0CwSDDVhCtzdX2UKGgGaAloD0MIhIQoX9AUckCUhpRSlGgVTSoBaBZHQLBIyrgOz6d1fZQoaAZoCWgPQwiCUx9IXmBsQJSGlFKUaBVNEgFoFkdAsEjy2VmjCnV9lChoBmgJaA9DCFwf1hs1Mm9AlIaUUpRoFU0JAWgWR0CwSP6fFrEcdX2UKGgGaAloD0MI7L5jeGxOcECUhpRSlGgVTRgBaBZHQLBI/t6X0Gx1fZQoaAZoCWgPQwgVqwZh7iBwQJSGlFKUaBVNHgFoFkdAsEkBA7gbZXV9lChoBmgJaA9DCFw5e2c09HFAlIaUUpRoFU0gAWgWR0CwSSGZ7XxwdX2UKGgGaAloD0MIdZDXg0k7Q0CUhpRSlGgVS8poFkdAsEknrv9cbHV9lChoBmgJaA9DCGMl5lnJWnJAlIaUUpRoFUvwaBZHQLBJMLP2PDJ1fZQoaAZoCWgPQwhwmGiQAnxvQJSGlFKUaBVL/mgWR0CwSURplBhQdX2UKGgGaAloD0MIhSf0+hOGb0CUhpRSlGgVTQsBaBZHQLBJRB2OhkB1fZQoaAZoCWgPQwjICRNGc1FxQJSGlFKUaBVNGgFoFkdAsEljMINVinV9lChoBmgJaA9DCOXxtPyAsHFAlIaUUpRoFU0VAWgWR0CwSW5amoBJdX2UKGgGaAloD0MIqIx/n3ERPkCUhpRSlGgVS8FoFkdAsEmMsI3R5XV9lChoBmgJaA9DCJaTUPoCRnFAlIaUUpRoFU0oAWgWR0CwScC7f51vdX2UKGgGaAloD0MIbatZZ7yTckCUhpRSlGgVTQ8BaBZHQLBJ3o371qZ1fZQoaAZoCWgPQwigVPt0vD5xQJSGlFKUaBVNLQFoFkdAsEpi4d6syXV9lChoBmgJaA9DCPThWYLM1nFAlIaUUpRoFUvsaBZHQLBKqoxpL291fZQoaAZoCWgPQwgJ3SVxVjJuQJSGlFKUaBVL+mgWR0CwSvUeZG8VdX2UKGgGaAloD0MIhq+vdWmZcUCUhpRSlGgVTQsBaBZHQLBK9VFQVKx1fZQoaAZoCWgPQwiga19Ar+NwQJSGlFKUaBVNEgFoFkdAsEr6PvKEFnV9lChoBmgJaA9DCKWCiqpfZnBAlIaUUpRoFU0rAWgWR0CwSw3Him2tdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 155,
79
  "n_steps": 1024,
80
  "gamma": 0.9995,
81
  "gae_lambda": 0.95,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69944ed170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69944ed200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69944ed290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69944ed320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f69944ed3b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f69944ed440>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69944ed4d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f69944ed560>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69944ed5f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69944ed680>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69944ed710>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f69944c7120>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1665910600223060125,
51
  "learning_rate": 0.001,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMDCz4Vljk+7nhevsqGLr5kyOK8Su4RvQAAAAAAAAAAs+sJPlncbz/lJ1Q+6SDYvu36Aj6GX9m8AAAAAAAAAAAz5iK99pgrurterLFEkziqpD1/Ozua8TIAAIA/AACAP6aU2T3LzYc+97SmvgFffr45H3e97m0APQAAAAAAAAAAGjkBvde6SLtTShY8G2uTPAARZjxASH29AACAPwAAgD8AGmg9Mfx2Pim1Sr2ZRWG+zttYPAd0FL0AAAAAAAAAAK0Sl77IZCU/9Y12vYLivb780HW+MOcePQAAAAAAAAAATRhRPRsU7j4z7gw9a+CTvqTwgTxgsRK9AAAAAAAAAADN+yY918QmuzJ+aD3Ajzc9y0kuPGQPDb4AAIA/AACAP82GXD0YOcU+BpLaPQBQk75aInM9eKTWuwAAAAAAAAAAZjIfPaeeFT7+42++YGBWvj4Shr3YCWc9AAAAAAAAAADT8EI+bgS+PgOub76mLGG+SuZ2PbIULb0AAAAAAAAAAGZtL73h2Mm6+/z+PAvjJLxcSYy6yGP/vAAAgD8AAIA/GmduPc+6gj9QCYo9RR8Av9PTPD2YbXg8AAAAAAAAAAAaxRu9uwmHvIVcOT1uOiA8g2PnvRe9BT0AAIA/AACAPzMu0DxogMY9n6wPvghagL7d03y9XDnBvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbUxBc0CUhpRSlIwBbJRNDQGMAXSUR0CQ9TxAB1cMdX2UKGgGaAloD0MIN1SM83dWcUCUhpRSlGgVTUUBaBZHQJD1e4nWrfd1fZQoaAZoCWgPQwjvq3Kh8tVtQJSGlFKUaBVNEAFoFkdAkPXFS4vvjXV9lChoBmgJaA9DCMBcixYgzW5AlIaUUpRoFUvnaBZHQJD12qWC2+h1fZQoaAZoCWgPQwgxfhr35nRvQJSGlFKUaBVL+mgWR0CQ9yB7NSqEdX2UKGgGaAloD0MI/gsEAbLCcECUhpRSlGgVTQ8BaBZHQJD30Oc2BJ91fZQoaAZoCWgPQwijdOlfUjBwQJSGlFKUaBVNCAFoFkdAkPf53os7MnV9lChoBmgJaA9DCITzqWPVFHBAlIaUUpRoFUv8aBZHQJD4TeWOZLJ1fZQoaAZoCWgPQwhIGAYs+TdxQJSGlFKUaBVL+mgWR0CQ+hQyyleodX2UKGgGaAloD0MIsOWV621ScECUhpRSlGgVS+toFkdAkPqBJVbRnnV9lChoBmgJaA9DCL00RYBTwnJAlIaUUpRoFU0JAWgWR0CQ+ob+tKZldX2UKGgGaAloD0MIRQ2mYXgYb0CUhpRSlGgVS+loFkdAkPqkT+NtInV9lChoBmgJaA9DCD874Lqi4nBAlIaUUpRoFUv9aBZHQJD63GEPDpF1fZQoaAZoCWgPQwiQ3QVKimxyQJSGlFKUaBVL/WgWR0CQ+2be/Ho6dX2UKGgGaAloD0MI443MIz9McECUhpRSlGgVTQkBaBZHQJD7cOUdJat1fZQoaAZoCWgPQwi/tRMloc1vQJSGlFKUaBVNDQFoFkdAkPuXwG4ZuXV9lChoBmgJaA9DCNfdPNXhuXBAlIaUUpRoFUvzaBZHQJD7omTkhid1fZQoaAZoCWgPQwgHKA01CihwQJSGlFKUaBVNCAFoFkdAkPvdr0rbxnV9lChoBmgJaA9DCJYjZCAP83BAlIaUUpRoFUv2aBZHQJD8BvqC6H11fZQoaAZoCWgPQwimQjwSr1lsQJSGlFKUaBVL+GgWR0CQ/CY02tMgdX2UKGgGaAloD0MIriglBKtFckCUhpRSlGgVS+BoFkdAkP4fUONHY3V9lChoBmgJaA9DCNMwfESM/nBAlIaUUpRoFU0bAWgWR0CQ/mYigTRIdX2UKGgGaAloD0MISIld29sxckCUhpRSlGgVTRsBaBZHQJD/Vhx5s0p1fZQoaAZoCWgPQwj+R6ZDp/FGQJSGlFKUaBVL3mgWR0CRACtG/etTdX2UKGgGaAloD0MI8iiV8ESWckCUhpRSlGgVS+xoFkdAkQA1n7Hhj3V9lChoBmgJaA9DCBnHSPaI33FAlIaUUpRoFU1EAWgWR0CRAFz5GjKxdX2UKGgGaAloD0MICf8iaAxGcUCUhpRSlGgVS+hoFkdAkQDMb3oLX3V9lChoBmgJaA9DCNi5aTNON3NAlIaUUpRoFU0AAWgWR0CRASYKIBRydX2UKGgGaAloD0MINKDejBrKbUCUhpRSlGgVS/xoFkdAkQEmQwK0D3V9lChoBmgJaA9DCMb5m1CIkG5AlIaUUpRoFUvuaBZHQJEBruOS4e91fZQoaAZoCWgPQwjwvioXaidzQJSGlFKUaBVL7GgWR0CRAjsTWXkYdX2UKGgGaAloD0MIFD5bBwf5TUCUhpRSlGgVTQABaBZHQJECYniNsFd1fZQoaAZoCWgPQwjRQCybucxwQJSGlFKUaBVNEQFoFkdAkQJi+g13uHV9lChoBmgJaA9DCICAtWoXfHFAlIaUUpRoFU0BAWgWR0CRAo90ihWYdX2UKGgGaAloD0MI/TGtTSN4cUCUhpRSlGgVTRoBaBZHQJECiojv/ip1fZQoaAZoCWgPQwgYIqevZ8dyQJSGlFKUaBVNTQFoFkdAkQPPgNwzcnV9lChoBmgJaA9DCCvZsRGIN29AlIaUUpRoFU0DAWgWR0CRBLW0qpcYdX2UKGgGaAloD0MIqTKMu0GyckCUhpRSlGgVTTcBaBZHQJESyeVcD8t1fZQoaAZoCWgPQwhKsg5H1zlwQJSGlFKUaBVNGQFoFkdAkRLvgeii7HV9lChoBmgJaA9DCDs6rkb2gHFAlIaUUpRoFUv4aBZHQJES/tqpLmJ1fZQoaAZoCWgPQwhS0sPQ6h5wQJSGlFKUaBVNBgFoFkdAkRNBMewLVnV9lChoBmgJaA9DCK/S3XU2c3BAlIaUUpRoFUvwaBZHQJETlZZB9kV1fZQoaAZoCWgPQwgnofSFEKttQJSGlFKUaBVNCwFoFkdAkRQECzTnaHV9lChoBmgJaA9DCMl06PQ8jG1AlIaUUpRoFU0EAWgWR0CRFC8xbjcVdX2UKGgGaAloD0MI1sVtNMCecECUhpRSlGgVTSsBaBZHQJEUTrX18LN1fZQoaAZoCWgPQwiqKjQQy9FxQJSGlFKUaBVL4WgWR0CRFIHv+fh/dX2UKGgGaAloD0MI7nvUX+98cUCUhpRSlGgVTREBaBZHQJEU/+cYqG11fZQoaAZoCWgPQwj9wcBzr59wQJSGlFKUaBVL8WgWR0CRFRptrKvFdX2UKGgGaAloD0MIog3ABkRrb0CUhpRSlGgVS/9oFkdAkRUYXj2i+XV9lChoBmgJaA9DCMHHYMVpvHBAlIaUUpRoFUvyaBZHQJEVHKwIMSd1fZQoaAZoCWgPQwgjTFEuzYFxQJSGlFKUaBVNEAFoFkdAkRWRdY4hlnV9lChoBmgJaA9DCOxph7/mF3NAlIaUUpRoFUv4aBZHQJEWXMpw0fp1fZQoaAZoCWgPQwiNX3glCQ9yQJSGlFKUaBVL9WgWR0CRFyOfdyksdX2UKGgGaAloD0MIuOhkqXVicECUhpRSlGgVS/RoFkdAkRj+Lehwl3V9lChoBmgJaA9DCCxhbYwdPnFAlIaUUpRoFUv8aBZHQJEZHJ4jbBZ1fZQoaAZoCWgPQwjwwADCB4ttQJSGlFKUaBVNBgFoFkdAkRmkwBYFJXV9lChoBmgJaA9DCLa93ZLc7HFAlIaUUpRoFUvzaBZHQJEZq12JSBN1fZQoaAZoCWgPQwiuu3mqQ4htQJSGlFKUaBVNAwFoFkdAkRnSWRigCnV9lChoBmgJaA9DCAIMy5/vVW5AlIaUUpRoFUvsaBZHQJEZ5UhmoR91fZQoaAZoCWgPQwgFa5xNB8lwQJSGlFKUaBVL82gWR0CRGjnrY5DJdX2UKGgGaAloD0MIPQ/uzto9cECUhpRSlGgVS/xoFkdAkRqQyVObiXV9lChoBmgJaA9DCLag98ZQ7XJAlIaUUpRoFU0NAWgWR0CRGzY7aIvbdX2UKGgGaAloD0MI5L9AEKC4bkCUhpRSlGgVS/poFkdAkRtXGS6lL3V9lChoBmgJaA9DCIdu9gdKwW5AlIaUUpRoFU0JAWgWR0CRG6DVH4GmdX2UKGgGaAloD0MIwY7/AoGxckCUhpRSlGgVS+5oFkdAkRuhciW3SnV9lChoBmgJaA9DCMjqVs+J6nJAlIaUUpRoFU0QAWgWR0CRG+kTpPhydX2UKGgGaAloD0MIxQH0+74HcECUhpRSlGgVTSgBaBZHQJEcbMibDuV1fZQoaAZoCWgPQwitwfuq3IVyQJSGlFKUaBVNIgFoFkdAkR3IiLVFyHV9lChoBmgJaA9DCBLb3QP0u25AlIaUUpRoFU0dAWgWR0CRHqM5wOvudX2UKGgGaAloD0MIsDvdeWKdcECUhpRSlGgVS/9oFkdAkR++qNp/PXV9lChoBmgJaA9DCAO2gxE7InNAlIaUUpRoFUvuaBZHQJEf2JsO5J91fZQoaAZoCWgPQwjo+GhxRmRtQJSGlFKUaBVL9WgWR0CRIBNDc/MXdX2UKGgGaAloD0MIQUmBBXBHckCUhpRSlGgVS/BoFkdAkSAUMTewcHV9lChoBmgJaA9DCEAv3Lkw3HFAlIaUUpRoFU0UAWgWR0CRIHhBZ6lddX2UKGgGaAloD0MIoSx8fW1ZcECUhpRSlGgVS/ZoFkdAkSCn9ehPCXV9lChoBmgJaA9DCLVtGAVBsHFAlIaUUpRoFUvvaBZHQJEg0cNpdrx1fZQoaAZoCWgPQwguGjIepfVvQJSGlFKUaBVL5GgWR0CRIUHG0eEJdX2UKGgGaAloD0MIfPKwUKsHcUCUhpRSlGgVS/1oFkdAkSG96PbO/3V9lChoBmgJaA9DCKzj+KGSdHFAlIaUUpRoFU01AWgWR0CRIdwz+FURdX2UKGgGaAloD0MIfGMIAE7uckCUhpRSlGgVS+xoFkdAkSH8U/OdG3V9lChoBmgJaA9DCLmJWpobQ3FAlIaUUpRoFU0GAWgWR0CRIk/HHWBjdX2UKGgGaAloD0MI14o2x7m1cUCUhpRSlGgVTSoBaBZHQJEjIy/KyOd1fZQoaAZoCWgPQwjPukbLAbVxQJSGlFKUaBVNHQFoFkdAkSOs+u/1x3V9lChoBmgJaA9DCJWdflAXRXJAlIaUUpRoFUvuaBZHQJEj8A2hqTN1fZQoaAZoCWgPQwg25+CZ0BBxQJSGlFKUaBVL6mgWR0CRJIVRk3CLdX2UKGgGaAloD0MIA5SGGkVrcUCUhpRSlGgVS/xoFkdAkSX//rB0p3V9lChoBmgJaA9DCMcS1sZYz3BAlIaUUpRoFU0LAWgWR0CRJodvbXYldX2UKGgGaAloD0MIppcYyzTxcECUhpRSlGgVTQwBaBZHQJEmyXnhbW51fZQoaAZoCWgPQwjM7PMYpRlxQJSGlFKUaBVNAwFoFkdAkSbuqzZ6EHV9lChoBmgJaA9DCIKPwYoT/XBAlIaUUpRoFUv3aBZHQJEm+/k/8l51fZQoaAZoCWgPQwhtVn2u9l1zQJSGlFKUaBVNBwFoFkdAkSc4lyBClnV9lChoBmgJaA9DCMjQsYPK83JAlIaUUpRoFU0jAWgWR0CRJ2HmRvFWdX2UKGgGaAloD0MIbXAi+vVgckCUhpRSlGgVS/5oFkdAkSg//JeVs3V9lChoBmgJaA9DCHNIaqHk929AlIaUUpRoFUv8aBZHQJEoW2uxKQJ1fZQoaAZoCWgPQwiKyLCK91VwQJSGlFKUaBVNBwFoFkdAkShgr+YMOXV9lChoBmgJaA9DCDBntiu0Z3BAlIaUUpRoFU0qAWgWR0CRKLiuMdcTdX2UKGgGaAloD0MIMQqCxzcAcUCUhpRSlGgVTRkBaBZHQJEpXfJmukl1fZQoaAZoCWgPQwj6Jk2DooJwQJSGlFKUaBVNFAFoFkdAkSorm6oVEnV9lChoBmgJaA9DCETdByA1c3BAlIaUUpRoFU0PAWgWR0CRKuDfm9xqdX2UKGgGaAloD0MIOxixT4AgcUCUhpRSlGgVTRwBaBZHQJEq8eFL39J1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 310,
79
  "n_steps": 1024,
80
  "gamma": 0.9995,
81
  "gae_lambda": 0.95,
ppo-LunarLander-v2-2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f5c9518ca2a75bedc5d55905e8a91284e7e2c301e4412ce79d68d4d097fc23a
3
  size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3836f938e9ddb946b8402e5ad37ea96cb7cb79575844c6547346d7763ea640
3
  size 87865
ppo-LunarLander-v2-2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ce925d9ce0e68ae4a0dc212f8ba5067ea682bddbe19fd4436f54cf3328b8281
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbf4c6f72ab066aee00791c6eb83861e7ab8aaa8b0eecbadbd60aaf00947299d
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 264.7669336863788, "std_reward": 21.936787862708233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-15T23:08:44.117596"}
 
1
+ {"mean_reward": 273.275076141508, "std_reward": 24.01212558622559, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-16T09:10:58.942466"}