๐ŸŽฅ CogvideoX-5b LoRa: Camera Movement Control

๐Ÿš€ Try it here: Interactive Demo


Description

This LoRa (Low-Rank Adapter) model extends CogVideoX to control camera movement in 6 directions: left, right, up, down, zoom_in, and zoom_out. The LoRa can generate smooth camera motions for enhanced video creation.


Usage

Usage

The LoRa was trained to control camera movement in 6 directions: left, right, up, down, zoom_in, zoom_out.

Prompt Format

Start prompt with text like this:

'ะกamera moves to the {}...',
'ะกamera is moving to the {}...',
'{} camera movement...',
'{} camera turn...',

Inference examples

ComfyUI example

image/png JSON File Example

Minimal code example

import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image


pipe = CogVideoXImageToVideoPipeline.from_pretrained(
    "THUDM/CogVideoX1.5-5B-I2V", torch_dtype=torch.bfloat16
)

pipe.load_lora_weights("NimVideo/cogvideox1.5-5b-prompt-camera-motion", adapter_name="cogvideox-lora")
pipe.set_adapters(["cogvideox-lora"], [1.0])

pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

height = 768 
width = 1360
image = load_image("resources/car.jpg").resize((width, height))
prompt = "Camera is moving to the left. A red sports car driving on a winding road."

video_generate = pipe(
    image=image,
    prompt=prompt,
    height=height, 
    width=width, 
    num_inference_steps=50,  
    num_frames=81,  
    guidance_scale=6.0,
    generator=torch.Generator().manual_seed(42), 
).frames[0]

export_to_video(video_generate, output_path, fps=8)

Inference with cli and jupyter-notebook examlple you can find on our Github

Acknowledgements

Original code and models CogVideoX.

Contacts

Issues should be raised directly in the repository.

Downloads last month
242
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.