🎥 CogvideoX-5b LoRa: Camera Movement Control

🚀 Try it here: Interactive Demo


Description

This LoRa (Low-Rank Adapter) model extends CogVideoX to control camera movement in 6 directions: left, right, up, down, zoom_in, and zoom_out. The LoRa can generate smooth camera motions for enhanced video creation.


Usage

Usage

The LoRa was trained to control camera movement in 6 directions: left, right, up, down, zoom_in, zoom_out.

Prompt Format

Start prompt with text like this:

'Сamera moves to the {}...',
'Сamera is moving to the {}...',
'{} camera movement...',
'{} camera turn...',

Inference examples

ComfyUI example

image/png JSON File Example

Minimal code example

import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image


pipe = CogVideoXImageToVideoPipeline.from_pretrained(
    "THUDM/CogVideoX1.5-5B-I2V", torch_dtype=torch.bfloat16
)

pipe.load_lora_weights("NimVideo/cogvideox1.5-5b-prompt-camera-motion", adapter_name="cogvideox-lora")
pipe.set_adapters(["cogvideox-lora"], [1.0])

pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

height = 768 
width = 1360
image = load_image("resources/car.jpg").resize((width, height))
prompt = "Camera is moving to the left. A red sports car driving on a winding road."

video_generate = pipe(
    image=image,
    prompt=prompt,
    height=height, 
    width=width, 
    num_inference_steps=50,  
    num_frames=81,  
    guidance_scale=6.0,
    generator=torch.Generator().manual_seed(42), 
).frames[0]

export_to_video(video_generate, output_path, fps=8)

Inference with cli and jupyter-notebook examlple you can find on our Github

Acknowledgements

Original code and models CogVideoX.

Contacts

Issues should be raised directly in the repository.

Downloads last month
292
Inference API
Unable to determine this model’s pipeline type. Check the docs .