🎥 CogvideoX-5b LoRa: Camera Movement Control
🚀 Try it here: Interactive Demo
Description
This LoRa (Low-Rank Adapter) model extends CogVideoX to control camera movement in 6 directions: left
, right
, up
, down
, zoom_in
, and zoom_out
. The LoRa can generate smooth camera motions for enhanced video creation.
Usage
Usage
The LoRa was trained to control camera movement in 6 directions: left
, right
, up
, down
, zoom_in
, zoom_out
.
Prompt Format
Start prompt with text like this:
'Сamera moves to the {}...',
'Сamera is moving to the {}...',
'{} camera movement...',
'{} camera turn...',
Inference examples
ComfyUI example
Minimal code example
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX1.5-5B-I2V", torch_dtype=torch.bfloat16
)
pipe.load_lora_weights("NimVideo/cogvideox1.5-5b-prompt-camera-motion", adapter_name="cogvideox-lora")
pipe.set_adapters(["cogvideox-lora"], [1.0])
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
height = 768
width = 1360
image = load_image("resources/car.jpg").resize((width, height))
prompt = "Camera is moving to the left. A red sports car driving on a winding road."
video_generate = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_inference_steps=50,
num_frames=81,
guidance_scale=6.0,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_video(video_generate, output_path, fps=8)
Inference with cli and jupyter-notebook examlple you can find on our Github
Acknowledgements
Original code and models CogVideoX.
Contacts
Issues should be raised directly in the repository.
- Downloads last month
- 292