Uploaded model

  • Developed by : NuclearAi
  • License : apache-2.0
  • Launch date : Saturday 15 June 2024
  • Base Model : Qwen/Qwen2-1.5B-Instruct
  • Special Thanks : To Unsloth

Dataset used for training !

We Used : NuclearAi/Nuke-Python-Verse To Finetune Qwen2-1.5B-Instruct Model on a Large Amount of Dataset of 240,888 Unique lines of Python Codes Scraped from Publicly Available Datasets !

Here is the code to run it in 4-bit Quantization method !

```python
#!pip install transformers torch accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"  # Use GPU if available, else fallback to CPU

# Configure for 4-bit quantization using bitsandbytes
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,     # Enable 4-bit quantization
    bnb_4bit_use_double_quant=True,  # Use double quantization
    bnb_4bit_compute_dtype=torch.float16  # Use float16 computation for improved performance
)

# Load the model with the specified configuration
model = AutoModelForCausalLM.from_pretrained(
    "NuclearAi/Hyper-X-Qwen2-1.5B-It-Python",
    quantization_config=bnb_config,  # Apply the 4-bit quantization configuration
    torch_dtype="auto",              # Automatic selection of data type
    device_map="auto" if device == "cuda" else None  # Automatically select the device for GPU, or fallback to CPU
)

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("NuclearAi/Hyper-X-Qwen2-1.5B-It-Python")

# Initialize a text streamer for streaming the output
streamer = TextStreamer(tokenizer)

# Function to generate a response from the model based on the user's input
def generate_response(user_input):
    # Tokenize the user input
    input_ids = tokenizer.encode(user_input, return_tensors="pt").to(device)
    
    # Generate the model's response with streaming enabled
    generated_ids = model.generate(
        input_ids,
        max_new_tokens=128,
        pad_token_id=tokenizer.eos_token_id,  # Handle padding for generation
        streamer=streamer                     # Use the streamer for real-time token output
    )
    
    # Decode the response from token IDs to text
    response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    return response.strip()

# Start the conversation loop
print("You can start chatting with the model. Type 'exit' to stop the conversation.")
while True:
    # Get the user's input
    user_input = input("You: ")
    
    # Check if the user wants to exit the conversation
    if user_input.lower() in ["exit", "quit", "stop"]:
        print("Ending the conversation. Goodbye!")
        break
    
    # Generate the model's response
    print("Assistant: ", end="", flush=True)  # Prepare to print the response
    response = generate_response(user_input)
    
    # The TextStreamer already prints the response token by token, so we just print a newline
    print()  # Ensure to move to the next line after the response is printed

Downloads last month
29
Safetensors
Model size
909M params
Tensor type
F32
·
FP16
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NuclearAi/Hyper-X-Qwen2-1.5B-It-Python

Quantized
(46)
this model

Dataset used to train NuclearAi/Hyper-X-Qwen2-1.5B-It-Python