SetFit with Maltehb/danish-bert-botxo
This is a SetFit model that can be used for Text Classification. This SetFit model uses Maltehb/danish-bert-botxo as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: Maltehb/danish-bert-botxo
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7317 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("OBech/IngroupOutgroup2")
# Run inference
preds = model("Jeg håber jeg igen kan få opbakning og tillid til at blive folketingsmedlem. Jeg kæmper for hjemstavnen. Jeg bor og lever i Vestjylland.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 94.5901 | 380 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.2605 | - |
0.0235 | 50 | 0.3094 | - |
0.0471 | 100 | 0.2222 | - |
0.0706 | 150 | 0.2855 | - |
0.0941 | 200 | 0.1699 | - |
0.1176 | 250 | 0.1467 | - |
0.1412 | 300 | 0.152 | - |
0.1647 | 350 | 0.2407 | - |
0.1882 | 400 | 0.0391 | - |
0.2118 | 450 | 0.0165 | - |
0.2353 | 500 | 0.0009 | - |
0.2588 | 550 | 0.0004 | - |
0.2824 | 600 | 0.0014 | - |
0.3059 | 650 | 0.0006 | - |
0.3294 | 700 | 0.0001 | - |
0.3529 | 750 | 0.0007 | - |
0.3765 | 800 | 0.0002 | - |
0.4 | 850 | 0.0004 | - |
0.4235 | 900 | 0.0003 | - |
0.4471 | 950 | 0.0001 | - |
0.4706 | 1000 | 0.0001 | - |
0.4941 | 1050 | 0.0002 | - |
0.5176 | 1100 | 0.0002 | - |
0.5412 | 1150 | 0.0005 | - |
0.5647 | 1200 | 0.0002 | - |
0.5882 | 1250 | 0.0002 | - |
0.6118 | 1300 | 0.062 | - |
0.6353 | 1350 | 0.0004 | - |
0.6588 | 1400 | 0.0377 | - |
0.6824 | 1450 | 0.0001 | - |
0.7059 | 1500 | 0.0001 | - |
0.7294 | 1550 | 0.0002 | - |
0.7529 | 1600 | 0.0001 | - |
0.7765 | 1650 | 0.0009 | - |
0.8 | 1700 | 0.0002 | - |
0.8235 | 1750 | 0.0003 | - |
0.8471 | 1800 | 0.0001 | - |
0.8706 | 1850 | 0.0068 | - |
0.8941 | 1900 | 0.0002 | - |
0.9176 | 1950 | 0.0001 | - |
0.9412 | 2000 | 0.0 | - |
0.9647 | 2050 | 0.0002 | - |
0.9882 | 2100 | 0.0 | - |
1.0 | 2125 | - | 0.205 |
1.0118 | 2150 | 0.0164 | - |
1.0353 | 2200 | 0.0002 | - |
1.0588 | 2250 | 0.0 | - |
1.0824 | 2300 | 0.0001 | - |
1.1059 | 2350 | 0.0 | - |
1.1294 | 2400 | 0.0001 | - |
1.1529 | 2450 | 0.0001 | - |
1.1765 | 2500 | 0.036 | - |
1.2 | 2550 | 0.0078 | - |
1.2235 | 2600 | 0.0002 | - |
1.2471 | 2650 | 0.0088 | - |
1.2706 | 2700 | 0.0336 | - |
1.2941 | 2750 | 0.0 | - |
1.3176 | 2800 | 0.0001 | - |
1.3412 | 2850 | 0.0387 | - |
1.3647 | 2900 | 0.0 | - |
1.3882 | 2950 | 0.0042 | - |
1.4118 | 3000 | 0.0001 | - |
1.4353 | 3050 | 0.0 | - |
1.4588 | 3100 | 0.0001 | - |
1.4824 | 3150 | 0.0001 | - |
1.5059 | 3200 | 0.0001 | - |
1.5294 | 3250 | 0.002 | - |
1.5529 | 3300 | 0.0001 | - |
1.5765 | 3350 | 0.0055 | - |
1.6 | 3400 | 0.0002 | - |
1.6235 | 3450 | 0.0 | - |
1.6471 | 3500 | 0.0 | - |
1.6706 | 3550 | 0.0 | - |
1.6941 | 3600 | 0.0 | - |
1.7176 | 3650 | 0.0001 | - |
1.7412 | 3700 | 0.0347 | - |
1.7647 | 3750 | 0.0 | - |
1.7882 | 3800 | 0.0 | - |
1.8118 | 3850 | 0.0 | - |
1.8353 | 3900 | 0.0001 | - |
1.8588 | 3950 | 0.0 | - |
1.8824 | 4000 | 0.0001 | - |
1.9059 | 4050 | 0.0 | - |
1.9294 | 4100 | 0.0001 | - |
1.9529 | 4150 | 0.0073 | - |
1.9765 | 4200 | 0.0001 | - |
2.0 | 4250 | 0.0 | 0.2099 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.3.0
- Transformers: 4.39.0
- PyTorch: 2.1.2
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 0
Inference API (serverless) has been turned off for this model.
Model tree for OBech/IngroupOutgroup2
Base model
Maltehb/danish-bert-botxo