Introducing ARM-V1 | Arabic Reranker Model (Version 1)

For more info please refer to this blog: ARM | Arabic Reranker Model.

✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision.

✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score.

✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results.

✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.

Arabic RAG Pipeline

Arabic RAG Pipeline

Usage

Using sentence-transformers

pip install sentence-transformers
from sentence_transformers import CrossEncoder

# Load the cross-encoder model

# Define a query and a set of candidates with varying degrees of relevance
query = "تطبيقات الذكاء الاصطناعي تُستخدم في مختلف المجالات لتحسين الكفاءة."

# Candidates with varying relevance to the query
candidates = [
    "الذكاء الاصطناعي يساهم في تحسين الإنتاجية في الصناعات المختلفة.", # Highly relevant
    "نماذج التعلم الآلي يمكنها التعرف على الأنماط في مجموعات البيانات الكبيرة.", # Moderately relevant
    "الذكاء الاصطناعي يساعد الأطباء في تحليل الصور الطبية بشكل أفضل.", # Somewhat relevant
    "تستخدم الحيوانات التمويه كوسيلة للهروب من الحيوانات المفترسة.", # Irrelevant
]

# Create pairs of (query, candidate) for each candidate
query_candidate_pairs = [(query, candidate) for candidate in candidates]

# Get relevance scores from the model
scores = model.predict(query_candidate_pairs)

# Combine candidates with their scores and sort them by score in descending order (higher score = higher relevance)
ranked_candidates = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)

# Output the ranked candidates with their scores
print("Ranked candidates based on relevance to the query:")
for i, (candidate, score) in enumerate(ranked_candidates, 1):
    print(f"Rank {i}:")
    print(f"Candidate: {candidate}")
    print(f"Score: {score}\n")

Evaluation

Dataset

Size: 3000 samples.

Structure:

🔸 Query: A string representing the user's question.

🔸 Candidate Document: A candidate passage to answer the query.

🔸 Relevance Label: Binary label (1 for relevant, 0 for irrelevant).

Evaluation Process

🔸 Query Grouping: Queries are grouped to evaluate the model's ability to rank candidate documents correctly for each query.

🔸 Model Prediction: Each model predicts relevance scores for all candidate documents corresponding to a query.

🔸 Metrics Calculation: Metrics are computed to measure how well the model ranks relevant documents higher than irrelevant ones.

Model MRR MAP nDCG@10
cross-encoder/ms-marco-MiniLM-L-6-v2 0.631 0.6313 0.725
cross-encoder/ms-marco-MiniLM-L-12-v2 0.664 0.664 0.750
BAAI/bge-reranker-v2-m3 0.902 0.902 0.927
Omartificial-Intelligence-Space/ARA-Reranker-V1 0.934 0.9335 0.951

Acknowledgments

The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.

## Citation

If you use the GATE, please cite it as follows:

@misc{nacar2025ARM,
      title={ARM, Arabic Reranker Model}, 
      author={Omer Nacar},
      year={2025},
      url={https://huggingface.co/Omartificial-Intelligence-Space/ARA-Reranker-V1},
}



Downloads last month
895
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support sentence-transformers models for this pipeline type.

Collection including Omartificial-Intelligence-Space/ARA-Reranker-V1