|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
|
|
- kasper52786/StoryWeaver-7b-Instruct-v0.1 |
|
- N8Programs/Coxcomb |
|
- Norquinal/Mistral-7B-storywriter |
|
base_model: |
|
- kasper52786/StoryWeaver-7b-Instruct-v0.1 |
|
- N8Programs/Coxcomb |
|
- Norquinal/Mistral-7B-storywriter |
|
--- |
|
|
|
# StoryFusion-7B |
|
|
|
StoryFusion-7B is a merge of the following models: |
|
* [kasper52786/StoryWeaver-7b-Instruct-v0.1](https://huggingface.co/kasper52786/StoryWeaver-7b-Instruct-v0.1) |
|
* [N8Programs/Coxcomb](https://huggingface.co/N8Programs/Coxcomb) |
|
* [Norquinal/Mistral-7B-storywriter](https://huggingface.co/Norquinal/Mistral-7B-storywriter) |
|
|
|
|
|
## ⚡ Quantized Models |
|
|
|
Thanks to MRadermacher for the quantized models |
|
|
|
**.GGUF** https://huggingface.co/mradermacher/StoryFusion-7B-GGUF |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: senseable/WestLake-7B-v2 |
|
# No parameters necessary for base model |
|
- model: kasper52786/StoryWeaver-7b-Instruct-v0.1 |
|
parameters: |
|
density: 0.53 |
|
weight: 0.4 |
|
- model: N8Programs/Coxcomb |
|
parameters: |
|
density: 0.53 |
|
weight: 0.3 |
|
- model: Norquinal/Mistral-7B-storywriter |
|
parameters: |
|
density: 0.53 |
|
weight: 0.3 |
|
merge_method: dare_ties |
|
base_model: senseable/WestLake-7B-v2 |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "OmnicromsBrain/StoryFusion-7B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |