Open-Assistant StableLM-7B SFT-7 Model

This is the 7th iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a StableLM 7B that was fine-tuned on human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before April 12, 2023.

Model Details

Prompting

Two special tokens are used to mark the beginning of user and assistant turns: <|prompter|> and <|assistant|>. Each turn ends with a <|endoftext|> token.

Input prompt example:

<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>

The input ends with the <|assistant|> token to signal that the model should start generating the assistant reply.

Dev Details

command: deepspeed trainer_sft.py --configs defaults stablelm-7b oasst-mix --cache_dir /home/ubuntu/data_cache --output_dir .saved/stable-lm-7b-1 --num_train_epochs 4 --deepspeed

data:

oasst-mix:
  save_strategy: epoch
  sort_by_length: false
  use_custom_sampler: false
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
    - vicuna:
        val_split: 0.05
        max_val_set: 800
        fraction: 1.0
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
    - grade_school_math_instructions:
        val_split: 0.05
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250

stablelm:

stablelm-7b:
  dtype: fp16
  log_dir: stablelm_log_7b
  model_name: stabilityai/stablelm-base-alpha-7b
  output_dir: stablelm_7b
  max_length: 4096
  warmup_steps: 100
  gradient_checkpointing: true
  gradient_accumulation_steps: 2
  per_device_train_batch_size: 4
  per_device_eval_batch_size: 4
  eval_steps: 100
  save_steps: 500
  num_train_epochs: 4
  save_total_limit: 4
  use_flash_attention: true

zero config:

{
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "initial_scale_power": 16,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "bf16": {
    "enabled": "auto"
  },
  "optimizer": {
    "type": "AdamW",
    "params": {
      "lr": "auto",
      "betas": "auto",
      "eps": "auto",
      "weight_decay": "auto"
    }
  },
  "scheduler": {
    "type": "WarmupDecayLR",
    "params": {
      "warmup_min_lr": "auto",
      "warmup_max_lr": "auto",
      "warmup_num_steps": "auto",
      "total_num_steps": "auto"
    }
  },
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 1e9,
    "overlap_comm": false,
    "reduce_scatter": true,
    "reduce_bucket_size": 1e9,
    "contiguous_gradients": true
  },
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "steps_per_print": 2000,
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "wall_clock_breakdown": false
}
Downloads last month
753
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using OpenAssistant/stablelm-7b-sft-v7-epoch-3 36