File size: 4,942 Bytes
0a22702 4c454bf 0a22702 4c454bf 0a22702 4c454bf 0a22702 c8aec45 0a22702 c8aec45 0a22702 c8aec45 0a22702 c8aec45 0a22702 c4dce28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
language:
- en
tags:
- sft
pipeline_tag: text-generation
widget:
- text: >-
<|prompter|>What is a meme, and what's the history behind this
word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: >-
<|prompter|>Write a story about future of AI
development<|endoftext|><|assistant|>
---
# Open-Assistant StableLM-7B SFT-7 Model
This is the 7th iteration English supervised-fine-tuning (SFT) model of
the [Open-Assistant](https://github.com/LAION-AI/Open-Assistant) project.
It is based on a StableLM 7B that was fine-tuned on human demonstrations
of assistant conversations collected through the
[https://open-assistant.io/](https://open-assistant.io/) human feedback web
app before April 12, 2023.
## Model Details
- **Developed by:** [Open-Assistant Contributors](https://open-assistant.io/)
- **Model type:** Transformer-based Language Model
- **Language:** English
- **Finetuned from:** [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
- **Code:** [Open-Assistant/model/model_training](https://github.com/LAION-AI/Open-Assistant/tree/main/model/model_training)
- **Demo:** TODO
- **License:** Creative Commons license ([CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/))
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
## Dev Details
- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/08dfhyuc
- base model: [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
- checkpoint: 3 epochs (12000 steps)
command: `deepspeed trainer_sft.py --configs defaults stablelm-7b oasst-mix --cache_dir /home/ubuntu/data_cache --output_dir .saved/stable-lm-7b-1 --num_train_epochs 4 --deepspeed`
data:
```
oasst-mix:
save_strategy: epoch
sort_by_length: false
use_custom_sampler: false
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
```
stablelm:
```
stablelm-7b:
dtype: fp16
log_dir: stablelm_log_7b
model_name: stabilityai/stablelm-base-alpha-7b
output_dir: stablelm_7b
max_length: 4096
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 2
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
eval_steps: 100
save_steps: 500
num_train_epochs: 4
save_total_limit: 4
use_flash_attention: true
```
zero config:
```
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenAssistant__stablelm-7b-sft-v7-epoch-3)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 31.38 |
| ARC (25-shot) | 36.01 |
| HellaSwag (10-shot) | 55.81 |
| MMLU (5-shot) | 25.01 |
| TruthfulQA (0-shot) | 37.02 |
| Winogrande (5-shot) | 54.85 |
| GSM8K (5-shot) | 0.38 |
| DROP (3-shot) | 10.61 |
|