bert-finetuned-ner-1

Este es modelo resultado de un finetuning de google-bert/bert-base-cased sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:

  • Training Loss: 0.000900
  • Validation Loss: 0.306902
  • Precision: 0.805356
  • Recall: 0.822381
  • F1: 0.813779
  • Accuracy: 0.969573

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • num_epochs: 8
  • weight_decay: 0.001

Training results

Epoch Training Loss Validation Loss Precision Recall F1 Accuracy
1.0 0.0045 0.263534 0.787187 0.815947 0.801309 0.968117
2.0 0.0054 0.261010 0.776933 0.798713 0.787673 0.966914
3.0 0.0031 0.288264 0.787994 0.811351 0.799502 0.967351
4.0 0.0030 0.261651 0.799186 0.812040 0.805562 0.969476
5.0 0.0023 0.281675 0.792880 0.813649 0.803130 0.968544
6.0 0.0014 0.285965 0.790842 0.817555 0.803977 0.969311
7.0 0.0009 0.320790 0.795583 0.811121 0.803277 0.968049
8.0 0.0009 0.306902 0.805356 0.822381 0.813779 0.969573
Downloads last month
25
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PLN-T4-J-D-W/bert-finetuned-ner-1

Finetuned
(2035)
this model

Dataset used to train PLN-T4-J-D-W/bert-finetuned-ner-1

Evaluation results