bert-finetuned-ner-1
Este es modelo resultado de un finetuning de google-bert/bert-base-cased sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:
- Training Loss: 0.000900
- Validation Loss: 0.306902
- Precision: 0.805356
- Recall: 0.822381
- F1: 0.813779
- Accuracy: 0.969573
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- num_epochs: 8
- weight_decay: 0.001
Training results
Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|
1.0 | 0.0045 | 0.263534 | 0.787187 | 0.815947 | 0.801309 | 0.968117 |
2.0 | 0.0054 | 0.261010 | 0.776933 | 0.798713 | 0.787673 | 0.966914 |
3.0 | 0.0031 | 0.288264 | 0.787994 | 0.811351 | 0.799502 | 0.967351 |
4.0 | 0.0030 | 0.261651 | 0.799186 | 0.812040 | 0.805562 | 0.969476 |
5.0 | 0.0023 | 0.281675 | 0.792880 | 0.813649 | 0.803130 | 0.968544 |
6.0 | 0.0014 | 0.285965 | 0.790842 | 0.817555 | 0.803977 | 0.969311 |
7.0 | 0.0009 | 0.320790 | 0.795583 | 0.811121 | 0.803277 | 0.968049 |
8.0 | 0.0009 | 0.306902 | 0.805356 | 0.822381 | 0.813779 | 0.969573 |
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PLN-T4-J-D-W/bert-finetuned-ner-1
Base model
google-bert/bert-base-casedDataset used to train PLN-T4-J-D-W/bert-finetuned-ner-1
Evaluation results
- Precision on conll2002validation set self-reported0.805
- Recall on conll2002validation set self-reported0.822
- F1 on conll2002validation set self-reported0.814
- Accuracy on conll2002validation set self-reported0.970