|
--- |
|
license: llama3 |
|
language: |
|
- fa |
|
- en |
|
library_name: transformers |
|
tags: |
|
- LLM |
|
- llama-3 |
|
- PartAI |
|
- conversational |
|
--- |
|
|
|
# Model Details |
|
|
|
The Dorna models are a family of decoder-only models, specifically trained/fine-tuned on Persian data, developed by [Part AI](https://partdp.ai/). As an initial release, an 8B instruct model from this family is |
|
Dorna-Llama3-8B-Instruct is built using the [Meta Llama 3 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) model. |
|
|
|
In this repo, we provide `bf16` model and quantized models in the GGUF formats, including `Q2_K`, `Q3_K`, `Q3_K_L`, `Q3_K_M`, `Q3_K_S`, `Q4_0`, `Q4_1`, `Q4_K_M`, `Q4_K_S`, `Q5_0`, `Q5_1`, `Q5_K_M`, `Q5_K_S` and `Q8_0` |
|
|
|
[Here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) offers an in-depth report that includes several performance charts. Check it out. |
|
|
|
<style> |
|
table td { |
|
padding-right: 30px; |
|
padding-left: 30px; |
|
color: #000; |
|
} |
|
th { |
|
color: #000; |
|
} |
|
a { |
|
color: #000; |
|
} |
|
</style> |
|
|
|
<table style="border-spacing: 30px; text-align: center;"> |
|
<tr style="background-color:#f2f2f2;"> |
|
<th>Name</th> |
|
<th>Quant Method</th> |
|
<th>Bits</th> |
|
<th>Memory</th> |
|
</tr> |
|
<tr style="background-color:#e0f7fa; " > |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q2_K.gguf">dorna-llama3-8b-instruct.Q2_K.gguf</a></td> |
|
<td>Q2_K</td> |
|
<td>2</td> |
|
<td>3.2 GB</td> |
|
</tr> |
|
<tr style="background-color:#e8f5e9;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q3_K_L.gguf">dorna-llama3-8b-instruct.Q3_K_L.gguf</a></td> |
|
<td>Q3_K_L</td> |
|
<td>3</td> |
|
<td>4.3 GB</td> |
|
</tr> |
|
<tr style="background-color:#e8f5e9;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q3_K_M.gguf">dorna-llama3-8b-instruct.Q3_K_M.gguf</a></td> |
|
<td>Q3_K_M</td> |
|
<td>3</td> |
|
<td>4.1 GB</td> |
|
</tr> |
|
<tr style="background-color:#e8f5e9;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q3_K_S.gguf">dorna-llama3-8b-instruct.Q3_K_S.gguf</a></td> |
|
<td>Q3_K_S</td> |
|
<td>3</td> |
|
<td>3.7 GB</td> |
|
</tr> |
|
<tr style="background-color:#fff3e0;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q4_0.gguf">dorna-llama3-8b-instruct.Q4_0.gguf</a></td> |
|
<td>Q4_1</td> |
|
<td>4</td> |
|
<td>4.7 GB</td> |
|
</tr> |
|
<tr style="background-color:#fff3e0;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q4_1.gguf">dorna-llama3-8b-instruct.Q4_1.gguf</a></td> |
|
<td>Q4_1</td> |
|
<td>4</td> |
|
<td>5.2 GB</td> |
|
</tr> |
|
<tr style="background-color:#fff3e0;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q4_K_M.gguf">dorna-llama3-8b-instruct.Q4_K_M.gguf</a></td> |
|
<td>Q4_K_M</td> |
|
<td>4</td> |
|
<td>4.9 GB</td> |
|
</tr> |
|
<tr style="background-color:#fff3e0;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q4_K_S.gguf">dorna-llama3-8b-instruct.Q4_K_S.gguf</a></td> |
|
<td>Q4_K_S</td> |
|
<td>4</td> |
|
<td>4.7 GB</td> |
|
</tr> |
|
<tr style="background-color:#ffe0b2; "> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q5_0.gguf">dorna-llama3-8b-instruct.Q5_0.gguf</a></td> |
|
<td>Q5_0</td> |
|
<td>5</td> |
|
<td>5.6 GB</td> |
|
</tr> |
|
<tr style="background-color:#ffe0b2; "> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q5_1.gguf">dorna-llama3-8b-instruct.Q5_1.gguf</a></td> |
|
<td>Q5_1</td> |
|
<td>5</td> |
|
<td>6.1 GB</td> |
|
</tr> |
|
<tr style="background-color:#ffe0b2; "> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q5_K_M.gguf">dorna-llama3-8b-instruct.Q5_K_M.gguf</a></td> |
|
<td>Q5_K_M</td> |
|
<td>5</td> |
|
<td>5.73 GB</td> |
|
</tr> |
|
<tr style="background-color:#ffe0b2; "> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q5_K_S.gguf">dorna-llama3-8b-instruct.Q5_K_S.gguf</a></td> |
|
<td>Q5_K_S</td> |
|
<td>5</td> |
|
<td>5.6 GB</td> |
|
</tr> |
|
<tr style="background-color:#e1bee7; "> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q6_K.gguf">dorna-llama3-8b-instruct.Q6_K.gguf</a></td> |
|
<td>Q6_K</td> |
|
<td>6</td> |
|
<td>6.6 GB</td> |
|
</tr> |
|
<tr style="background-color:#c5cae9;"> |
|
<td style="text-align: left;"> |
|
<a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.Q8_0.gguf">dorna-llama3-8b-instruct.Q8_0.gguf</a> |
|
<span style="background-color: #4CAF50; color: white; padding: 2px 8px; margin-left: 10px; border-radius: 4px; font-size: 12px;">Recommended</span> |
|
</td> |
|
<td>Q8_0</td> |
|
<td>8</td> |
|
<td>8.5 GB</td> |
|
</tr> |
|
|
|
<tr style="background-color:#b2dfdb;"> |
|
<td style="text-align: left;"><a href="https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/blob/main/dorna-llama3-8b-instruct.bf16.gguf">dorna-llama3-8b-instruct.bf16.gguf</a></td> |
|
<td>None</td> |
|
<td>16</td> |
|
<td>16.2 GB</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
## Requirements |
|
We recommend using the Python version of [`llama.cpp`](https://github.com/ggerganov/llama.cpp) and installing it with the following command: |
|
|
|
```bash |
|
!pip install https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.78/llama_cpp_python-0.2.78-cp310-cp310-linux_x86_64.whl |
|
``` |
|
|
|
## How to use |
|
Instead of cloning the repository, which may be inefficient, you can manually download the required GGUF file or use `huggingface-cli` (`pip install huggingface_hub`) as demonstrated below: |
|
|
|
```bash |
|
!huggingface-cli login --token $HUGGING_FACE_HUB_TOKEN |
|
!huggingface-cli download PartAI/Dorna-Llama3-8B-Instruct-GGUF dorna-llama3-8b-instruct.Q8_0.gguf --local-dir . --local-dir-use-symlinks False |
|
``` |
|
|
|
|
|
```Python |
|
from llama_cpp import Llama |
|
|
|
llm = Llama( |
|
model_path="dorna-llama3-8b-instruct.Q8_0.gguf", |
|
chat_format="llama-3", |
|
n_gpu_layers=-1, |
|
n_ctx=2048, |
|
|
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful Persian assistant. Please answer questions in the asked language."}, |
|
{"role": "user", "content": "کاغذ A4 بزرگ تر است یا A5؟"}, |
|
] |
|
result = llm.create_chat_completion( |
|
messages = messages, |
|
top_p=0.85, |
|
temperature=0.1 |
|
|
|
) |
|
|
|
print(result) |
|
``` |
|
|
|
|
|
## Contact us |
|
|
|
If you have any questions regarding this model, you can reach us via the [community](https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct-GGUF/discussions) on Hugging Face. |