robert_bilstm_mega_res-ner-resume-ner
This model is a fine-tuned version of hfl/chinese-roberta-wwm-ext-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2496
- Precision: 0.9534
- Recall: 0.9609
- F1: 0.9572
- Accuracy: 0.9756
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0932 | 1.0 | 134 | 0.0917 | 0.9224 | 0.9496 | 0.9358 | 0.9734 |
0.0356 | 2.0 | 268 | 0.0776 | 0.9343 | 0.9635 | 0.9487 | 0.9777 |
0.0363 | 3.0 | 402 | 0.1026 | 0.9309 | 0.9479 | 0.9393 | 0.9727 |
0.0278 | 4.0 | 536 | 0.1041 | 0.9408 | 0.9531 | 0.9469 | 0.9750 |
0.0131 | 5.0 | 670 | 0.1194 | 0.9411 | 0.9574 | 0.9492 | 0.9746 |
0.0071 | 6.0 | 804 | 0.1491 | 0.9593 | 0.9618 | 0.9605 | 0.9768 |
0.0042 | 7.0 | 938 | 0.1474 | 0.9567 | 0.9609 | 0.9588 | 0.9749 |
0.0105 | 8.0 | 1072 | 0.1318 | 0.9527 | 0.9635 | 0.9581 | 0.9768 |
0.0039 | 9.0 | 1206 | 0.1616 | 0.9374 | 0.9496 | 0.9435 | 0.9724 |
0.0023 | 10.0 | 1340 | 0.1547 | 0.9452 | 0.9592 | 0.9521 | 0.9755 |
0.0026 | 11.0 | 1474 | 0.1585 | 0.9447 | 0.9505 | 0.9476 | 0.9746 |
0.0046 | 12.0 | 1608 | 0.1492 | 0.9411 | 0.9574 | 0.9492 | 0.9748 |
0.0051 | 13.0 | 1742 | 0.1440 | 0.9519 | 0.9626 | 0.9572 | 0.9755 |
0.0037 | 14.0 | 1876 | 0.1651 | 0.9516 | 0.9574 | 0.9545 | 0.9743 |
0.0006 | 15.0 | 2010 | 0.1641 | 0.9517 | 0.9583 | 0.9550 | 0.9755 |
0.0003 | 16.0 | 2144 | 0.1957 | 0.9536 | 0.9635 | 0.9585 | 0.9734 |
0.0002 | 17.0 | 2278 | 0.1896 | 0.9469 | 0.9600 | 0.9534 | 0.9734 |
0.0016 | 18.0 | 2412 | 0.1877 | 0.9419 | 0.9574 | 0.9496 | 0.9731 |
0.0001 | 19.0 | 2546 | 0.2117 | 0.9481 | 0.9531 | 0.9506 | 0.9722 |
0.0018 | 20.0 | 2680 | 0.2165 | 0.9540 | 0.9548 | 0.9544 | 0.9743 |
0.0011 | 21.0 | 2814 | 0.2082 | 0.9534 | 0.9592 | 0.9563 | 0.9719 |
0.0006 | 22.0 | 2948 | 0.2052 | 0.9567 | 0.9592 | 0.9579 | 0.9730 |
0.0001 | 23.0 | 3082 | 0.2016 | 0.9551 | 0.9600 | 0.9575 | 0.9746 |
0.0019 | 24.0 | 3216 | 0.1969 | 0.9549 | 0.9557 | 0.9553 | 0.9746 |
0.001 | 25.0 | 3350 | 0.1927 | 0.9516 | 0.9557 | 0.9536 | 0.9742 |
0.0002 | 26.0 | 3484 | 0.1767 | 0.9601 | 0.9609 | 0.9605 | 0.9752 |
0.0003 | 27.0 | 3618 | 0.1936 | 0.9433 | 0.9540 | 0.9486 | 0.9735 |
0.0011 | 28.0 | 3752 | 0.1928 | 0.9425 | 0.9548 | 0.9486 | 0.9734 |
0.0001 | 29.0 | 3886 | 0.2076 | 0.9456 | 0.9522 | 0.9489 | 0.9739 |
0.0052 | 30.0 | 4020 | 0.2040 | 0.9418 | 0.9557 | 0.9487 | 0.9748 |
0.0013 | 31.0 | 4154 | 0.1716 | 0.9552 | 0.9635 | 0.9593 | 0.9749 |
0.0004 | 32.0 | 4288 | 0.1762 | 0.9475 | 0.9566 | 0.9520 | 0.9755 |
0.0004 | 33.0 | 4422 | 0.1479 | 0.9450 | 0.9557 | 0.9503 | 0.9768 |
0.0001 | 34.0 | 4556 | 0.1668 | 0.9469 | 0.9609 | 0.9539 | 0.9766 |
0.0019 | 35.0 | 4690 | 0.1884 | 0.9508 | 0.9574 | 0.9541 | 0.9766 |
0.0001 | 36.0 | 4824 | 0.1873 | 0.9451 | 0.9566 | 0.9508 | 0.9748 |
0.0012 | 37.0 | 4958 | 0.1807 | 0.9553 | 0.9652 | 0.9602 | 0.9763 |
0.0071 | 38.0 | 5092 | 0.1993 | 0.9558 | 0.9592 | 0.9575 | 0.9760 |
0.0 | 39.0 | 5226 | 0.1821 | 0.9483 | 0.9557 | 0.9520 | 0.9751 |
0.0008 | 40.0 | 5360 | 0.1968 | 0.9576 | 0.9626 | 0.9601 | 0.9757 |
0.0011 | 41.0 | 5494 | 0.1930 | 0.9493 | 0.9600 | 0.9546 | 0.9751 |
0.0016 | 42.0 | 5628 | 0.1974 | 0.9476 | 0.9592 | 0.9534 | 0.9753 |
0.0 | 43.0 | 5762 | 0.1935 | 0.9477 | 0.9600 | 0.9538 | 0.9759 |
0.0015 | 44.0 | 5896 | 0.1970 | 0.9525 | 0.9583 | 0.9554 | 0.9757 |
0.0008 | 45.0 | 6030 | 0.2079 | 0.9542 | 0.9592 | 0.9567 | 0.9775 |
0.0003 | 46.0 | 6164 | 0.1899 | 0.9435 | 0.9583 | 0.9509 | 0.9746 |
0.0047 | 47.0 | 6298 | 0.1822 | 0.9478 | 0.9626 | 0.9552 | 0.9748 |
0.0019 | 48.0 | 6432 | 0.1990 | 0.9543 | 0.9609 | 0.9576 | 0.9758 |
0.001 | 49.0 | 6566 | 0.2001 | 0.9518 | 0.9609 | 0.9563 | 0.9764 |
0.0 | 50.0 | 6700 | 0.1961 | 0.9493 | 0.9600 | 0.9546 | 0.9758 |
0.0 | 51.0 | 6834 | 0.2083 | 0.9551 | 0.9618 | 0.9584 | 0.9765 |
0.0 | 52.0 | 6968 | 0.2072 | 0.9558 | 0.9583 | 0.9570 | 0.9762 |
0.0 | 53.0 | 7102 | 0.2112 | 0.9516 | 0.9574 | 0.9545 | 0.9764 |
0.0001 | 54.0 | 7236 | 0.2160 | 0.9560 | 0.9618 | 0.9589 | 0.9774 |
0.0 | 55.0 | 7370 | 0.2166 | 0.9560 | 0.9618 | 0.9589 | 0.9771 |
0.0 | 56.0 | 7504 | 0.2188 | 0.9560 | 0.9618 | 0.9589 | 0.9770 |
0.0 | 57.0 | 7638 | 0.2208 | 0.9568 | 0.9618 | 0.9593 | 0.9771 |
0.0007 | 58.0 | 7772 | 0.2301 | 0.9559 | 0.9600 | 0.9580 | 0.9764 |
0.0 | 59.0 | 7906 | 0.2317 | 0.9551 | 0.9600 | 0.9575 | 0.9764 |
0.0 | 60.0 | 8040 | 0.2326 | 0.9559 | 0.9600 | 0.9580 | 0.9759 |
0.0 | 61.0 | 8174 | 0.2349 | 0.9583 | 0.9592 | 0.9587 | 0.9761 |
0.0 | 62.0 | 8308 | 0.2378 | 0.9550 | 0.9592 | 0.9571 | 0.9768 |
0.0 | 63.0 | 8442 | 0.2406 | 0.9526 | 0.9600 | 0.9563 | 0.9767 |
0.0 | 64.0 | 8576 | 0.2367 | 0.9584 | 0.9600 | 0.9592 | 0.9771 |
0.0009 | 65.0 | 8710 | 0.2329 | 0.9584 | 0.9600 | 0.9592 | 0.9772 |
0.0 | 66.0 | 8844 | 0.2376 | 0.9524 | 0.9566 | 0.9545 | 0.9761 |
0.0009 | 67.0 | 8978 | 0.2381 | 0.9509 | 0.9583 | 0.9546 | 0.9759 |
0.0 | 68.0 | 9112 | 0.2236 | 0.9585 | 0.9644 | 0.9615 | 0.9778 |
0.0 | 69.0 | 9246 | 0.2194 | 0.9619 | 0.9644 | 0.9631 | 0.9769 |
0.0 | 70.0 | 9380 | 0.2192 | 0.9595 | 0.9670 | 0.9632 | 0.9775 |
0.0 | 71.0 | 9514 | 0.2124 | 0.9562 | 0.9679 | 0.9620 | 0.9777 |
0.0007 | 72.0 | 9648 | 0.2139 | 0.9587 | 0.9679 | 0.9633 | 0.9777 |
0.0 | 73.0 | 9782 | 0.2266 | 0.9552 | 0.9644 | 0.9598 | 0.9764 |
0.0 | 74.0 | 9916 | 0.2275 | 0.9593 | 0.9635 | 0.9614 | 0.9765 |
0.0 | 75.0 | 10050 | 0.2239 | 0.9577 | 0.9644 | 0.9610 | 0.9774 |
0.0 | 76.0 | 10184 | 0.2212 | 0.9578 | 0.9652 | 0.9615 | 0.9760 |
0.0 | 77.0 | 10318 | 0.2208 | 0.9560 | 0.9635 | 0.9598 | 0.9758 |
0.0 | 78.0 | 10452 | 0.2259 | 0.9577 | 0.9635 | 0.9606 | 0.9757 |
0.0 | 79.0 | 10586 | 0.2279 | 0.9593 | 0.9635 | 0.9614 | 0.9756 |
0.0 | 80.0 | 10720 | 0.2294 | 0.9577 | 0.9635 | 0.9606 | 0.9756 |
0.0 | 81.0 | 10854 | 0.2380 | 0.9492 | 0.9574 | 0.9533 | 0.9766 |
0.0 | 82.0 | 10988 | 0.2405 | 0.9577 | 0.9644 | 0.9610 | 0.9759 |
0.0 | 83.0 | 11122 | 0.2442 | 0.9511 | 0.9635 | 0.9573 | 0.9751 |
0.0003 | 84.0 | 11256 | 0.2371 | 0.9552 | 0.9626 | 0.9589 | 0.9749 |
0.0 | 85.0 | 11390 | 0.2499 | 0.9559 | 0.9609 | 0.9584 | 0.9750 |
0.0 | 86.0 | 11524 | 0.2516 | 0.9601 | 0.9626 | 0.9614 | 0.9752 |
0.0 | 87.0 | 11658 | 0.2519 | 0.9593 | 0.9626 | 0.9610 | 0.9752 |
0.0008 | 88.0 | 11792 | 0.2516 | 0.9576 | 0.9618 | 0.9597 | 0.9752 |
0.0007 | 89.0 | 11926 | 0.2517 | 0.9593 | 0.9626 | 0.9610 | 0.9753 |
0.0 | 90.0 | 12060 | 0.2477 | 0.9559 | 0.9609 | 0.9584 | 0.9754 |
0.0 | 91.0 | 12194 | 0.2477 | 0.9559 | 0.9609 | 0.9584 | 0.9754 |
0.0 | 92.0 | 12328 | 0.2479 | 0.9543 | 0.9609 | 0.9576 | 0.9755 |
0.0007 | 93.0 | 12462 | 0.2482 | 0.9543 | 0.9609 | 0.9576 | 0.9754 |
0.0 | 94.0 | 12596 | 0.2487 | 0.9534 | 0.9609 | 0.9572 | 0.9755 |
0.0 | 95.0 | 12730 | 0.2490 | 0.9534 | 0.9609 | 0.9572 | 0.9755 |
0.0 | 96.0 | 12864 | 0.2495 | 0.9534 | 0.9609 | 0.9572 | 0.9755 |
0.0 | 97.0 | 12998 | 0.2489 | 0.9534 | 0.9609 | 0.9572 | 0.9755 |
0.0 | 98.0 | 13132 | 0.2495 | 0.9534 | 0.9609 | 0.9572 | 0.9756 |
0.0006 | 99.0 | 13266 | 0.2496 | 0.9534 | 0.9609 | 0.9572 | 0.9756 |
0.0 | 100.0 | 13400 | 0.2496 | 0.9534 | 0.9609 | 0.9572 | 0.9756 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.4.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 126
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PassbyGrocer/hreb-resume
Base model
hfl/chinese-roberta-wwm-ext-large