PaulD's picture
End of training
7c2f4df verified
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- kto
- generated_from_trainer
model-index:
- name: llama3_false_positives_0609_KTO_hp_screening
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3_false_positives_0609_KTO_hp_screening
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6200
- Eval/rewards/chosen: 0.1376
- Eval/logps/chosen: -196.7612
- Eval/rewards/rejected: 0.1472
- Eval/logps/rejected: -209.5413
- Eval/rewards/margins: -0.0096
- Eval/kl: 1.2612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4989 | 0.96 | 12 | 0.6223 | 0.2616 |
| 0.6212 | 2.0 | 25 | 0.6215 | 0.8164 |
| 0.4973 | 2.96 | 37 | 0.6192 | 1.2270 |
| 0.7188 | 3.84 | 48 | 0.6200 | 1.2612 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.44.0
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1