llama3_false_positives_1101_KTO_optimised_model

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5288
  • Rewards/chosen: 0.5981
  • Logps/chosen: -45.9608
  • Rewards/rejected: -0.3258
  • Logps/rejected: -56.8765
  • Rewards/margins: 0.9238
  • Kl: 0.0439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Logps/chosen Rewards/rejected Logps/rejected Rewards/margins Kl
0.4886 0.96 12 0.6709 0.1420 -50.5211 0.0978 -52.6405 0.0442 0.1381
0.5124 2.0 25 0.5966 0.3060 -48.8816 -0.1760 -55.3786 0.4819 0.0375
0.3647 2.96 37 0.5552 0.4908 -47.0331 -0.2555 -56.1745 0.7464 0.0447
0.3725 4.0 50 0.5239 0.5506 -46.4352 -0.3964 -57.5829 0.9470 0.0317
0.3249 4.96 62 0.5300 0.5839 -46.1019 -0.3309 -56.9280 0.9148 0.0409
0.3262 5.76 72 0.5288 0.5981 -45.9608 -0.3258 -56.8765 0.9238 0.0439

Framework versions

  • PEFT 0.11.1
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 3.1.0
  • Tokenizers 0.15.2
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for PaulD/llama3_false_positives_1101_KTO_optimised_model

Adapter
(667)
this model