|
--- |
|
license: mit |
|
base_model: microsoft/mdeberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- universal_dependencies |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: mdeberta-v3-ud-thai-pud-upos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: universal_dependencies |
|
type: universal_dependencies |
|
config: th_pud |
|
split: test |
|
args: th_pud |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9934846474601972 |
|
widget: |
|
- text: นักวิจัยกล่าวว่าการวิเคราะห์ดีเอ็นเอของเนื้องอกอาจช่วยอธิบายถึงสาเหตุที่แท้จริงของมะเร็งชนิดอื่นๆ ได้ |
|
example_title: test_example_1 |
|
- text: >- |
|
คือผมไม่ได้ชอบกดดันพวกคุณหรอกนะ แต่ชะตากรรมของสาธารณรัฐอยู่ในกำมือคุณ |
|
example_title: test_example_2 |
|
|
|
language: |
|
- th |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mdeberta-v3-ud-thai-pud-upos |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the universal_dependencies dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0303 |
|
- Macro avg precision: 0.9235 |
|
- Macro avg recall: 0.9228 |
|
- Macro avg f1: 0.9231 |
|
- Weighted avg precision: 0.9935 |
|
- Weighted avg recall: 0.9935 |
|
- Weighted avg f1: 0.9935 |
|
- Accuracy: 0.9935 |
|
|
|
## Model description |
|
|
|
This model is train on thai UD Thai PUD corpus with `Universal Part-of-speech (UPOS)` tag to help with pos tagging in Thai language. |
|
|
|
## Example |
|
```python |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("Pavarissy/mdeberta-v3-ud-thai-pud-upos") |
|
tokenizer = AutoTokenizer.from_pretrained("Pavarissy/mdeberta-v3-ud-thai-pud-upos") |
|
|
|
pipeline = TokenClassificationPipeline(model=model, tokenizer=tokenizer, grouped_entities=True) |
|
outputs = pipeline("ประเทศไทย อยู่ใน ทวีป เอเชีย") |
|
print(outputs) |
|
# [{'entity_group': 'PROPN', 'score': 0.9946701, 'word': 'ประเทศไทย', 'start': 0, 'end': 9}, {'entity_group': 'VERB', 'score': 0.85809743, 'word': 'อยู่ใน', 'start': 9, 'end': 16}, {'entity_group': 'NOUN', 'score': 0.99632, 'word': 'ทวีป', 'start': 16, 'end': 21}, {'entity_group': 'PROPN', 'score': 0.9961184, 'word': 'เอเชีย', 'start': 21, 'end': 28}] |
|
|
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Macro avg precision | Macro avg recall | Macro avg f1 | Weighted avg precision | Weighted avg recall | Weighted avg f1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------------:|:-------------------:|:---------------:|:--------:| |
|
| No log | 1.0 | 125 | 0.3898 | 0.8417 | 0.7849 | 0.8078 | 0.9119 | 0.9112 | 0.9101 | 0.9112 | |
|
| No log | 2.0 | 250 | 0.1768 | 0.8765 | 0.8683 | 0.8720 | 0.9561 | 0.9560 | 0.9559 | 0.9560 | |
|
| No log | 3.0 | 375 | 0.1217 | 0.8972 | 0.8892 | 0.8929 | 0.9701 | 0.9701 | 0.9699 | 0.9701 | |
|
| 0.4709 | 4.0 | 500 | 0.0841 | 0.9057 | 0.9064 | 0.9059 | 0.9802 | 0.9800 | 0.9800 | 0.9800 | |
|
| 0.4709 | 5.0 | 625 | 0.0649 | 0.9128 | 0.9133 | 0.9130 | 0.9854 | 0.9853 | 0.9853 | 0.9853 | |
|
| 0.4709 | 6.0 | 750 | 0.0513 | 0.9147 | 0.9170 | 0.9158 | 0.9878 | 0.9877 | 0.9877 | 0.9877 | |
|
| 0.4709 | 7.0 | 875 | 0.0423 | 0.9199 | 0.9180 | 0.9189 | 0.9900 | 0.9900 | 0.9900 | 0.9900 | |
|
| 0.0857 | 8.0 | 1000 | 0.0350 | 0.9226 | 0.9207 | 0.9216 | 0.9921 | 0.9921 | 0.9921 | 0.9921 | |
|
| 0.0857 | 9.0 | 1125 | 0.0318 | 0.9237 | 0.9219 | 0.9228 | 0.9932 | 0.9932 | 0.9932 | 0.9932 | |
|
| 0.0857 | 10.0 | 1250 | 0.0303 | 0.9235 | 0.9228 | 0.9231 | 0.9935 | 0.9935 | 0.9935 | 0.9935 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |