See axolotl config
axolotl version: 0.4.0
base_model: Undi95/Meta-Llama-3-8B-hf
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Pbug/bftest
type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 10
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
eval_sample_packing: False
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
lora-out
This model is a fine-tuned version of Undi95/Meta-Llama-3-8B-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5419 | 0.03 | 1 | nan |
2.5492 | 0.51 | 18 | nan |
2.434 | 1.01 | 36 | nan |
2.3504 | 1.5 | 54 | nan |
2.3643 | 2.0 | 72 | nan |
2.2834 | 2.48 | 90 | nan |
2.2383 | 2.98 | 108 | nan |
1.8786 | 3.47 | 126 | nan |
1.7963 | 3.98 | 144 | nan |
2.1853 | 4.47 | 162 | nan |
1.4333 | 4.98 | 180 | nan |
1.2058 | 5.46 | 198 | nan |
1.125 | 5.96 | 216 | nan |
0.809 | 6.44 | 234 | nan |
0.7118 | 6.94 | 252 | nan |
0.7175 | 7.44 | 270 | nan |
0.7341 | 7.94 | 288 | nan |
0.774 | 8.44 | 306 | nan |
0.6379 | 8.94 | 324 | nan |
0.562 | 9.41 | 342 | nan |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Pbug/bf_rp_base
Base model
Undi95/Meta-Llama-3-8B-hf