wav2vec2-xls-r-300m-ca
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the tv3_parla and parlament_parla datasets. It achieves the following results on the evaluation set (for the three datasets):
- Loss: 0.2472
- Wer: 0.1499
Model description
Please check the original facebook/wav2vec2-xls-r-1b Model card. This is just a finetuned version of that model.
Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
Training and evaluation data
More information needed
Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by @ccoreilly, which can be found on the text/ folder or here.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 |
1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 |
1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 |
1.136 | 6.93 | 13000 | 0.2765 | 0.1643 |
1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 |
1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 |
1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 |
1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 |
1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 |
1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 |
1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 |
1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 |
1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 |
1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 |
1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 |
1.09 | 10.12 | 19000 | 0.2577 | 0.1578 |
1.089 | 10.39 | 19500 | 0.2574 | 0.1531 |
1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 |
1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 |
1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 |
1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 |
1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 |
1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 |
1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 |
1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 |
1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 |
1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 |
1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 |
1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 |
1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 |
1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 |
1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 |
1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 |
1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 |
1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 |
1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 |
1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 |
1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 |
1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 |
1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
Thanks
Want to thank both @ccoreilly and @gullabi who have contributed with their own resources and knowledge into making this model possible.
- Downloads last month
- 64
Datasets used to train PereLluis13/wav2vec2-xls-r-300m-ca
Evaluation results
- Test WER on mozilla-foundation/common_voice_8_0 caself-reported13.170
- Test CER on mozilla-foundation/common_voice_8_0 caself-reported3.357
- Test WER on projecte-aina/parlament_parla caself-reported8.048
- Test CER on projecte-aina/parlament_parla caself-reported2.241
- Test WER on collectivat/tv3_parla caself-reported23.321
- Test CER on collectivat/tv3_parla caself-reported10.439
- Test WER on speech-recognition-community-v2/dev_data caself-reported31.997
- Test CER on speech-recognition-community-v2/dev_data caself-reported15.820
- Test WER on Robust Speech Event - Test Dataself-reported22.040