PraneetNeuro's picture
Update README.md
538e8b9 verified

CLIP Sparse Autoencoder Checkpoint

This model is a sparse autoencoder trained on CLIP's internal representations.

Model Details

Architecture

  • Layer: 4
  • Layer Type: hook_resid_post
  • Model: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K
  • Dictionary Size: 49152.0
  • Input Dimension: 768.0
  • Expansion Factor: 64.0
  • CLS Token Only: False

Training

  • Training Images: 1299936.0000
  • Learning Rate: 0.0002
  • L1 Coefficient: 0.0000
  • Batch Size: 4096.0
  • Context Size: 49.0

Performance Metrics

Sparsity

  • L0 (Active Features): 965.4101

  • Dead Features: 0.0000

  • Mean Passes Since Fired: 2.1601

Reconstruction

  • Explained Variance: 0.9987
  • Explained Variance Std: 0.0032
  • MSE Loss: 0.0000
  • L1 Loss: 1456.6568
  • Overall Loss: 0.0001

Training Details

  • Training Duration: 3927 seconds
  • Final Learning Rate: 0.0000
  • Warm Up Steps: 200.0
  • Gradient Clipping: 1.0

Additional Information