bart_samsum / README.md
Priyanka-Balivada's picture
BART-summarization
1034a01 verified
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart_samsum
    results: []

bart_samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5520
  • Rouge1: 53.0152
  • Rouge2: 28.029
  • Rougel: 43.8864
  • Rougelsum: 48.7945
  • Gen Len: 30.3138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.4812 1.0 921 1.5084 52.6238 27.9144 43.3378 48.77 30.4225
1.1068 2.0 1842 1.4507 53.2142 28.5004 44.382 49.228 28.6264
0.9224 3.0 2763 1.5031 52.8334 27.9492 43.7939 48.714 29.5751
0.7957 4.0 3684 1.5520 53.0152 28.029 43.8864 48.7945 30.3138

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1