Edit model card

MIDICausalFinetuningFromFolder

This model was trained from scratch on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.6992 1.0 959 2.6253
2.6438 2.0 1918 2.5918
2.6098 3.0 2877 2.5617
2.5847 4.0 3836 2.5325
2.5604 5.0 4795 2.5040
2.5433 6.0 5754 2.4798
2.5203 7.0 6713 2.4534
2.4956 8.0 7672 2.4253
2.4787 9.0 8631 2.4038
2.4582 10.0 9590 2.3793
2.4419 11.0 10549 2.3574
2.4246 12.0 11508 2.3354
2.4114 13.0 12467 2.3144
2.3916 14.0 13426 2.2958
2.3882 15.0 14385 2.2784
2.364 16.0 15344 2.2607
2.3512 17.0 16303 2.2440
2.3444 18.0 17262 2.2292
2.3261 19.0 18221 2.2123
2.3165 20.0 19180 2.1988
2.3071 21.0 20139 2.1844
2.2968 22.0 21098 2.1729
2.2868 23.0 22057 2.1625
2.2777 24.0 23016 2.1522
2.2666 25.0 23975 2.1428
2.2619 26.0 24934 2.1365
2.2616 27.0 25893 2.1291
2.2563 28.0 26852 2.1228
2.2482 29.0 27811 2.1197
2.2493 30.0 28770 2.1183

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
35
Safetensors
Model size
12.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.