sheepy928's picture
Model save
f7f1a62 verified
|
raw
history blame
3.53 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: src_prober_codellama-13b-last1unfreeze
    results: []

src_prober_codellama-13b-last1unfreeze

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6267

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7443 0.12 500 0.7429
0.6851 0.24 1000 0.7170
0.6723 0.36 1500 0.6912
0.6605 0.48 2000 0.6730
0.6475 0.6 2500 0.6643
0.6419 0.72 3000 0.6584
0.6307 0.85 3500 0.6532
0.6167 0.97 4000 0.6495
0.6272 1.09 4500 0.6477
0.6002 1.21 5000 0.6445
0.6303 1.33 5500 0.6429
0.6405 1.45 6000 0.6421
0.6041 1.57 6500 0.6387
0.5912 1.69 7000 0.6370
0.6121 1.81 7500 0.6360
0.613 1.93 8000 0.6344
0.6126 2.05 8500 0.6338
0.5932 2.17 9000 0.6344
0.5927 2.3 9500 0.6332
0.5883 2.42 10000 0.6317
0.6023 2.54 10500 0.6308
0.5898 2.66 11000 0.6311
0.576 2.78 11500 0.6291
0.5699 2.9 12000 0.6291
0.6093 3.02 12500 0.6290
0.5754 3.14 13000 0.6292
0.6294 3.26 13500 0.6282
0.591 3.38 14000 0.6283
0.599 3.5 14500 0.6273
0.5933 3.62 15000 0.6281
0.565 3.75 15500 0.6268
0.5884 3.87 16000 0.6267
0.5809 3.99 16500 0.6266
0.5618 4.11 17000 0.6271
0.5749 4.23 17500 0.6274
0.577 4.35 18000 0.6268
0.5947 4.47 18500 0.6267
0.5902 4.59 19000 0.6268
0.5869 4.71 19500 0.6268
0.5829 4.83 20000 0.6268
0.5587 4.95 20500 0.6267

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.0
  • Datasets 2.17.0
  • Tokenizers 0.15.2