File size: 2,364 Bytes
d01a864
 
 
 
 
 
 
 
 
 
 
 
 
 
e14c3d2
 
d01a864
 
 
 
 
 
 
 
 
 
 
e14c3d2
d01a864
e14c3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d01a864
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

---

base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
datasets:
- mlabonne/FineTome-100k

---

![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)

# QuantFactory/FineLlama-3.1-8B-GGUF
This is quantized version of [mlabonne/FineLlama-3.1-8B](https://huggingface.co/mlabonne/FineLlama-3.1-8B) created using llama.cpp

# Original Model Card


# 🍷 FineLlama-3.1-8B

![](https://i.imgur.com/jUDo6ID.jpeg)

This is a finetune of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) made for my article ["Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth"](https://huggingface.co/blog/mlabonne/sft-llama3).

It was trained on 100k super high-quality samples from the [mlabonne/FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset.

**Try the demo**: https://huggingface.co/spaces/mlabonne/FineLlama-3.1-8B

## 🔎 Applications

This model was made for educational purposes. I recommend using Meta's instruct model for real applications.

## ⚡ Quantization

* **GGUF**: https://huggingface.co/mlabonne/FineLlama-3.1-8B-GGUF

## 🏆 Evaluation

TBD.

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/FineLlama-3.1-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

---

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)