QuantFactory/rho-math-1b-interpreter-v0.1-GGUF

This is quantized version of microsoft/rho-math-1b-interpreter-v0.1 created using llama.cpp

Model Description

Rho-1: Not All Tokens Are What You Need

[πŸ“œ Arxiv] β€’ [πŸ’¬ HF Paper] β€’ [πŸ€— Models] β€’ [🐱 GitHub]


Figure 1: Rho-1 is pre-trained with Selective Language Modeling (SLM). SLM improves average few-shot accuracy on GSM8k and MATH by over 16%, achieving the baseline performance 5-10x faster.

πŸ”₯ News

  • [2024/04/12] πŸ”₯πŸ”₯πŸ”₯ Rho-Math-v0.1 models released at πŸ€— HuggingFace!
    • Rho-Math-1B and Rho-Math-7B achieve 15.6% and 31.0% few-shot accuracy on MATH dataset, respectively β€” matching DeepSeekMath with only 3% of the pretraining tokens.
    • Rho-Math-1B-Interpreter is the first 1B LLM that achieves over 40% accuracy on MATH.
    • Rho-Math-7B-Interpreter achieves 52% on MATH dataset, using only 69k samples for fine-tuning.
  • [2024/04/11] Rho-1 paper and repo released.

πŸ’‘ Introduction

Rho-1 base models employ Selective Language Modeling (SLM) for pretraining, which selectively trains on clean and useful tokens that aligned with the desired distribution.

Selective Lanugage Modeling (SLM)


Figure 2: Upper: Even an extensively filtered pretraining corpus contains token-level noise. Left: Previous Causal Language Modeling (CLM) trains on all tokens. Right: Our proposed Selective Language Modeling (SLM) selectively applies loss on those useful and clean tokens.


Figure 3: The pipeline of Selective Language Modeling. SLM optimizes language model performance by concentrating on valuable, clean tokens during pre-training. It involves three steps: (Step 1) Initially, train a reference model on high-quality data. (Step 2) Then, score each token's loss in a corpus using the reference model. (Step 3) Finally, train the language model selectively on tokens that show higher excess loss compared to the reference loss.

Evaluation Results

Base models (Few-shot CoT):

Model Size Data Uniq. Token Train Token GSM8K MATH MMLU STEM SAT
1-2B Base Models
Qwen1.5 1.8B - - - 36.1 6.8 31.3 40.6
Gemma 2.0B - - - 18.8 11.4 34.4 50.0
DeepSeekMath 1.3B - 120B 150B 23.8 13.6 33.1 56.3
Rho-Math-1B-v0.1 1.1B OWM 14B 30B 36.2 15.6 23.3 28.1
>= 7B Base Models
Mistral 7B - - 41.2 11.6 49.5 59.4
Minerva 540B - 39B 26B 58.8 33.6 63.9 -
LLemma 34B PPile 55B 50B 54.2 23.0 54.7 68.8
InternLM2-Math 20B - 31B 125B 65.4 30.0 53.1 71.9
DeepSeekMath 7B - 120B 500B 64.1 34.2 56.4 84.4
Rho-Math-7B-v0.1 7B OWM 14B 10.5B 66.9 31.0 54.6 84.4

Tool-integrated reasoning (Code Interpreter):

Model Size SFT Data GSM8k MATH SVAMP ASDiv MAWPS TabMWP GSM-Hard AVG
gpt4-early (pal) - - 94.2 51.8 94.8 92.6 97.7 95.9 77.6 86.4
gpt-4-turbo-2024-04-09 (cot) - - - 73.4 - - - - -
Open-Source Small Models
MAmmoTH 70B MI-260k 76.9 41.8 82.4 - - - - -
ToRA 7B ToRA-69k 68.8 40.1 68.2 73.9 88.8 42.4 54.6 62.4
ToRA 70B ToRA-69k 84.3 49.7 82.7 86.8 93.8 74.0 67.2 76.9
DeepSeekMath 7B ToRA-69k 79.8 52.0 80.1 87.1 93.8 85.8 63.1 77.4
Rho-Math-1B-Interpreter-v0.1 1B ToRA-69k 59.4 40.6 60.7 74.2 88.6 26.7 48.1 56.9
Rho-Math-7B-Interpreter-v0.1 7B ToRA-69k 81.3 51.8 80.8 85.5 94.5 70.1 63.1 75.3

πŸš€ Quick Start

Evaluation

git clone [email protected]:microsoft/rho.git
cd rho-1/math-evaluation-harness

Base model few-shot evaluation:

bash scripts/run_eval.sh cot microsoft/rho-math-7b-v0.1

SFT model (code-interpreter) evaluation:

bash scripts/run_eval.sh tora microsoft/rho-math-7b-interpreter-v0.1

Our reproduced outputs are provided in rho-1/outputs.zip.

Downloads last month
100
GGUF
Model size
1.1B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for QuantFactory/rho-math-1b-interpreter-v0.1-GGUF

Quantized
(5)
this model