Highest Scoring
Collection
My models with the best score results
•
4 items
•
Updated
Rune-14b is a merge of the following models using LazyMergekit:
base_model: Quazim0t0/Mithril-14B-sce
dtype: bfloat16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.5, 0.3, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.5, 0.7, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 40]
model: Quazim0t0/time-14b-stock
- layer_range: [0, 40]
model: Quazim0t0/Mithril-14B-sce
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Quazim0t0/Rune-14b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 41.82 |
IFEval (0-Shot) | 70.16 |
BBH (3-Shot) | 56.05 |
MATH Lvl 5 (4-Shot) | 45.85 |
GPQA (0-shot) | 13.53 |
MuSR (0-shot) | 16.29 |
MMLU-PRO (5-shot) | 49.02 |