|
--- |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- qwen |
|
- audio-text-to-text |
|
pipeline_tag: text-generation |
|
inference: false |
|
--- |
|
|
|
# Qwen-Audio-Chat |
|
|
|
|
|
<br> |
|
|
|
<p align="center"> |
|
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/audio_logo.jpg" width="400"/> |
|
<p> |
|
<br> |
|
|
|
<p align="center"> |
|
Qwen-Audio <a href="https://www.modelscope.cn/models/qwen/QWen-Audio/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-Audio">🤗</a>  | Qwen-Audio-Chat <a href="https://www.modelscope.cn/models/qwen/QWen-Audio-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-Audio-Chat">🤗</a>  |    Demo<a href="https://modelscope.cn/studios/qwen/Qwen-Audio-Chat-Demo/summary"> 🤖</a> | <a href="https://huggingface.co/spaces/Qwen/Qwen-Audio">🤗</a>  |
|
<br> |
|
  <a href="https://qwen-audio.github.io/Qwen-Audio/">Homepage</a>  |  <a href="http://arxiv.org/abs/2311.07919">Paper</a> |
|
</p> |
|
<br><br> |
|
|
|
**Qwen-Audio** (Qwen Large Audio Language Model) is the multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-Audio accepts diverse audio (human speech, natural sound, music and song) and text as inputs, outputs text. The contribution of Qwen-Audio include: |
|
|
|
- **Fundamental audio models**: Qwen-Audio is a fundamental multi-task audio-language model that supports various tasks, languages, and audio types, serving as a universal audio understanding model. Building upon Qwen-Audio, we develop Qwen-Audio-Chat through instruction fine-tuning, enabling multi-turn dialogues and supporting diverse audio-oriented scenarios. |
|
- **Multi-task learning framework for all types of audios**: To scale up audio-language pre-training, we address the challenge of variation in textual labels associated with different datasets by proposing a multi-task training framework, enabling knowledge sharing and avoiding one-to-many interference. Our model incorporates more than 30 tasks and extensive experiments show the model achieves strong performance. |
|
- **Strong Performance**: Experimental results show that Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Specifically, Qwen-Audio achieves state-of-the-art results on the test set of Aishell1, cochlscene, ClothoAQA, and VocalSound. |
|
- **Flexible multi-run chat from audio and text input**: Qwen-Audio supports multiple-audio analysis, sound understading and reasoning, music appreciation, and tool usage for speech editing. |
|
|
|
**Qwen-Audio** 是阿里云研发的大规模音频语言模型(Large Audio Language Model)。Qwen-Audio 可以以多种音频 (包括说话人语音、自然音、音乐、歌声)和文本作为输入,并以文本作为输出。Qwen-Audio 系列模型的特点包括: |
|
|
|
- **音频基石模型**:Qwen-Audio是一个性能卓越的通用的音频理解模型,支持各种任务、语言和音频类型。在Qwen-Audio的基础上,我们通过指令微调开发了Qwen-Audio-Chat,支持多轮、多语言、多语言对话。Qwen-Audio和Qwen-Audio-Chat模型均已开源。 |
|
- **兼容多种复杂音频的多任务学习框架**:为了避免由于数据收集来源不同以及任务类型不同,带来的音频到文本的一对多的干扰问题,我们提出了一种多任务训练框架,实现相似任务的知识共享,并尽可能减少不同任务之间的干扰。通过提出的框架,Qwen-Audio可以容纳训练超过30多种不同的音频任务; |
|
- **出色的性能**:Qwen-Audio在不需要任何任务特定的微调的情况下,在各种基准任务上取得了领先的结果。具体得,Qwen-Audio在Aishell1、cochlscene、ClothoAQA和VocalSound的测试集上都达到了SOTA; |
|
- **支持多轮音频和文本对话,支持各种语音场景**:Qwen-Audio-Chat支持声音理解和推理、音乐欣赏、多音频分析、多轮音频-文本交错对话以及外部语音工具的使用(如语音编辑)。 |
|
|
|
|
|
We release Qwen-Audio and Qwen-Audio-Chat, which are pretrained model and Chat model respectively. For more details about Qwen-Audio, please refer to our [Github Repo](https://github.com/QwenLM/Qwen-Audio/tree/main). This repo is the one for Qwen-Audio-Chat. |
|
<br> |
|
|
|
目前,我们提供了Qwen-Audio和Qwen-Audio-Chat两个模型,分别为预训练模型和Chat模型。如果想了解更多关于信息,请点击[链接](https://github.com/QwenLM/Qwen-Audio/tree/main)查看Github仓库。本仓库为Qwen-Audio-Chat仓库。 |
|
|
|
|
|
## Requirements |
|
* python 3.8 and above |
|
* pytorch 1.12 and above, 2.0 and above are recommended |
|
* CUDA 11.4 and above are recommended (this is for GPU users) |
|
* FFmpeg |
|
<br> |
|
|
|
## Quickstart |
|
Below, we provide simple examples to show how to use Qwen-Audio with 🤗 Transformers. |
|
|
|
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries. |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
Now you can start with Transformers. For more usage, please refer to [tutorial](https://github.com/QwenLM/Qwen-Audio/blob/main/TUTORIAL.md). |
|
|
|
#### 🤗 Transformers |
|
|
|
To use Qwen-Audio for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.** |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.generation import GenerationConfig |
|
import torch |
|
torch.manual_seed(1234) |
|
|
|
# Note: The default behavior now has injection attack prevention off. |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True) |
|
|
|
# use bf16 |
|
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval() |
|
# use fp16 |
|
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval() |
|
# use cpu only |
|
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cpu", trust_remote_code=True).eval() |
|
# use cuda device |
|
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval() |
|
|
|
# Specify hyperparameters for generation (No need to do this if you are using transformers>4.32.0) |
|
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True) |
|
|
|
# 1st dialogue turn |
|
query = tokenizer.from_list_format([ |
|
{'audio': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/1272-128104-0000.flac'}, # Either a local path or an url |
|
{'text': 'what does the person say?'}, |
|
]) |
|
response, history = model.chat(tokenizer, query=query, history=None) |
|
print(response) |
|
# The person says: "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel". |
|
|
|
# 2nd dialogue turn |
|
response, history = model.chat(tokenizer, 'Find the start time and end time of the word "middle classes"', history=history) |
|
print(response) |
|
# The word "middle classes" starts at <|2.33|> seconds and ends at <|3.26|> seconds. |
|
``` |
|
|
|
|
|
## License Agreement |
|
Researchers and developers are free to use the codes and model weights of Qwen-Audio-Chat. We also allow its commercial use. Check our license at [LICENSE](https://github.com/QwenLM/Qwen-Audio/blob/main/LICENSE.txt) for more details. |
|
<br> |
|
|
|
## Citation |
|
If you find our paper and code useful in your research, please consider giving a star and citation |
|
|
|
```BibTeX |
|
@article{Qwen-Audio, |
|
title={Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models}, |
|
author={Chu, Yunfei and Xu, Jin and Zhou, Xiaohuan and Yang, Qian and Zhang, Shiliang and Yan, Zhijie and Zhou, Chang and Zhou, Jingren}, |
|
journal={arXiv preprint arXiv:2311.07919}, |
|
year={2023} |
|
} |
|
``` |
|
<br> |
|
|
|
## Contact Us |
|
|
|
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen[email protected]. |